Genes behind aggressive endometrial cancer found

January 28, 2013

In a major breakthrough for uterine serous carcinoma (USC)—a chemo-resistant, aggressive form of endometrial cancer, Yale researchers have defined the genetic landscape of USC tumors, findings that point to new treatment opportunities.

The collaborative team—which included researchers with expertise in gynecological cancer, genomics, and — identified a number of new genes that are frequently mutated in USC. The results of this comprehensive genetic analysis of USC are published in the Jan. 28 (PNAS) online early edition. The researchers were supported as part of a collaborative program with Gilead Sciences, Inc.

is the most prevalent gynecologic in women, with over 47,000 newly diagnosed cases and about 8,000 deaths in 2012 in the United States alone. Patients with type I endometrial generally have a good outcome, but those with type II, or USC, have more relapses and deaths, and the disease is more aggressive.

"We have clearly identified the mutations that are responsible for USC tumors," said senior author of the study Alessandro Santin, M.D., professor of obstetrics, gynecology and reproductive sciences at Yale School of Medicine, and program leader of the gynecological cancers program at Smilow Cancer Hospital at Yale-New Haven and a member of Yale Cancer Center. "In addition to a number of well-known cancer genes, we found three genes that had not previously been associated with cancer that are found in these tumors. This finding points to new pathways that could be important in developing therapies down the road."

The team collected tumors from 57 women affected with USC to try to determine the molecular basis of the tumor's aggressive behavior. They sequenced all the genes from the tumors and identified mutations that are crucial for these tumors to grow. The team also studied the copy number variations—genes that are not mutated but are amplified in the tumors to give them a growth advantage over normal tissues.

The newly-identified cancer-related genes included two—CHD4 and MBD3—that are found in the same protein complex and play a role in remodeling the genome to allow certain regions to be turned on and off. The discovery of a third gene, TAF1, was a surprise to researchers because it is a core component of the machinery responsible for transcribing a large fraction of the protein coding in the human genome.

"The detailed study of different cancers continues to produce new and unexpected discoveries," said corresponding author Richard P. Lifton, M.D., Sterling Professor, chair of genetics at Yale, and a Howard Hughes Medical Institute investigator. "These new findings define the biological basis of this , and suggest new opportunities for personalized therapy."

Explore further: Researchers identify novel genes that may drive rare, aggressive form of uterine cancer

More information: PNAS, doi:10.1073/pnas.1222577110

Related Stories

Researchers identify novel genes that may drive rare, aggressive form of uterine cancer

October 28, 2012
Researchers have identified several genes that are linked to one of the most lethal forms of uterine cancer, serous endometrial cancer. The researchers describe how three of the genes found in the study are frequently altered ...

Genetic landscape of common brain tumors holds key to personalized treatment

January 24, 2013
Nearly the entire genetic landscape of the most common form of brain tumor can be explained by abnormalities in just five genes, an international team of researchers led by Yale School of Medicine scientists report online ...

Genetic switch shuts down lung cancer tumors in mice

October 25, 2012
Yale researchers manipulated a tiny genetic switch and halted growth of aggressive lung cancer tumors in mice and even prevented tumors from forming.

Experts identify critical genes mutated in stomach cancer

April 8, 2012
An international team of scientists, led by researchers from the Duke-NUS Graduate Medical School (Duke-NUS) in Singapore and National Cancer Centre of Singapore, has identified hundreds of novel genes that are mutated in ...

Recommended for you

Study provides insight into link between two rare tumor syndromes

August 22, 2017
UCLA researchers have discovered that timing is everything when it comes to preventing a specific gene mutation in mice from developing rare and fast-growing cancerous tumors, which also affects young children. This mutation ...

Retaining one normal BRCA gene in breast, ovarian cancers influences patient survival

August 22, 2017
Determining which cancer patients are likely to be resistant to initial treatment is a major research effort of oncologists and laboratory scientists. Now, ascertaining who might fall into that category may become a little ...

Zebrafish larvae could be used as 'avatars' to optimize personalized treatment of cancer

August 21, 2017
Portuguese scientists have for the first time shown that the larvae of a tiny fish could one day become the preferred model for predicting, in advance, the response of human malignant tumors to the various therapeutic drugs ...

Scientists discover vitamin C regulates stem cell function, curbs leukemia development

August 21, 2017
Not much is known about stem cell metabolism, but a new study from the Children's Medical Center Research Institute at UT Southwestern (CRI) has found that stem cells take up unusually high levels of vitamin C, which then ...

Searching for the 'signature' causes of BRCAness in breast cancer

August 21, 2017
Breast cancer cells with defects in the DNA damage repair-genes BRCA1 and BRCA2 have a mutational signature (a pattern of base swaps—e.g., Ts for Gs, Cs for As—throughout a genome) known in cancer genomics as "Signature ...

How a non-coding RNA encourages cancer growth and metastasis

August 21, 2017
A mechanism that pushes a certain gene to produce a non-coding form of RNA instead of its protein-coding alternative can promote the growth of cancer, report researchers at the Medical University of South Carolina (MUSC) ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.