Genomic sequencing identifies mutant 'drivers' of common brain tumor

January 22, 2013

Large-scale genomic sequencing has revealed two DNA mutations that appear to drive about 15 percent of brain tumors known as meningiomas, a finding that could lead to the first effective drug treatments for the tumors, report scientists from Dana-Farber Cancer Institute and the Broad Institute.

Surgery and radiation currently are the only treatments for meningiomas – slow-growing, often that develop in the membranes surrounding the brain. Meningiomas can grow dangerously large, however, causing seizures and limb weakness, and occasionally are fatal. In some instances, the tumors grow aggressively or their locations make surgery and radiation a challenge to carry out, and chemotherapy has proven ineffective as an alternative.

The researchers report in the journal Nature Genetics that they have identified two mutations, SMO and AKT1, in the genomes of 15 percent of a group of meningiomas removed during surgery. The findings are being published on the journal's web site in advance of appearing in a print edition.

"The wonderful thing about those mutations is that there are already drugs in the clinic to target cancers with those mutations," said Rameen Beroukhim, MD, PhD, a medical oncologist and cancer biologist at Dana-Farber and the Broad Institute.

"Clinically, there is no for that is known to be effective," said Beroukhim, senior author of the paper along with William C. Hahn, MD, PhD, director of the Center for Cancer Genome Discovery at Dana-Farber, and Ian F. Dunn, MD, a at Dana-Farber/Brigham and Women's (DF/BWCC).

Beroukhim said that surgery can effectively treat many meningiomas, but the locations of some tumors make surgery a difficult or impossible option. For other patients, there are not curative treatments, so the discovery of the mutations in some meningiomas "is potentially the first path to an effective medical treatment," Beroukhim noted.

Meningiomas are diagnosed in about 18,000 patients annually in the United States. They account for about one-third of primary (those that originate in the brain) and are twice as common in women. They are generally slow-growing, and many patients don't require treatment unless the expands and presses on vital structures. But a significant number recur following treatment, and many become malignant.

Beroukhim said that little has been uncovered about the genetic makeup of meningiomas. In the current study, the scientists sequenced either the entire or just the protein-coding regions (exomes) in samples of 17 meningiomas. Genes that were found to be altered in those tumors were then sequenced in two additional groups of tumors.

Compared to most types of tumors, the researchers found, the meningiomas had fewer numbers of genetic changes or damage. In some of the tumors they found mutations in two genes that have roles in known cancer-causing signaling pathways. One, SMO, found in three tumors, is a member of the Hedgehog pathway. The second, AKT1, was discovered in five tumors and is a part of the PI3K-AKT-mTOR pathways that is implicated in breast, colorectal and lung cancers. A sixth tumor had a previously unknown mutation in the mTOR pathway.

Together, these mutant gene pathways appeared to be key drivers of 15 percent of the meningiomas studied. Experimental drugs that inhibit those abnormal pathways are in clinical trials and have shown promising activity, the researchers said, suggesting "that patients with these meningiomas may benefit from such targeted therapies already in development or use."

Explore further: Why do meningiomas grow during pregnancy?

Related Stories

Why do meningiomas grow during pregnancy?

November 20, 2012
Meningiomas are a common type of benign brain tumor that sometimes grows dramatically in pregnant women. A new study suggests that this sudden tumor growth likely results from "hemodynamic changes" associated with pregnancy, ...

Genetic link to rare brain tumour discovered

August 2, 2011
Cancer Research UK funded scientists have conducted the first whole-genome scan of the brain tumour meningioma and revealed a genetic region that increases the risk of developing the disease, according to research published ...

Melanoma: Whole-genome sequencing of 25 tumors confirms role of sun damage, reveals new genetic alterations

May 9, 2012
Melanoma – the deadliest and most aggressive form of skin cancer – has long been linked to time spent in the sun. Now a team led by scientists from the Broad Institute and Dana-Farber Cancer Institute has sequenced ...

Definition of lung squamous cell carcinoma genome opens doors to better, more targeted therapies

September 9, 2012
A new paper published online in Nature holds out hope that people with the second most common type of lung cancer may one day benefit from targeted therapies that have transformed treatments for other lung cancer patients.

Scientists identify overactive genes in aggressive breast cancers

June 1, 2011
Scientists at Dana-Farber Cancer Institute have identified an overactive network of growth-spurring genes that drive stem-like breast cancer cells enriched in triple-negative breast tumors, a typically aggressive cancer that ...

Elusive gene mutations found for malignant brain tumor

August 4, 2011
A discovery by scientists at Duke University Medical Center and Johns Hopkins University could increase the chances for an effective combination of drug therapy to treat the second most common type of brain tumor.

Recommended for you

Scientists provide insight into genetic basis of neuropsychiatric disorders

July 21, 2017
A study by scientists at the Children's Medical Center Research Institute at UT Southwestern (CRI) is providing insight into the genetic basis of neuropsychiatric disorders. In this research, the first mouse model of a mutation ...

South Asian genomes could be boon for disease research, scientists say

July 18, 2017
The Indian subcontinent's massive population is nearing 1.5 billion according to recent accounts. But that population is far from monolithic; it's made up of nearly 5,000 well-defined sub-groups, making the region one of ...

Mutant yeast reveals details of the aberrant genomic machinery of children's high-grade gliomas

July 18, 2017
St. Jude Children's Research Hospital biologists have used engineered yeast cells to discover how a mutation that is frequently found in pediatric brain tumor high-grade glioma triggers a cascade of genomic malfunctions.

Late-breaking mutations may play an important role in autism

July 17, 2017
A study of nearly 6,000 families, combining three genetic sequencing technologies, finds that mutations that occur after conception play an important role in autism. A team led by investigators at Boston Children's Hospital ...

Newly identified genetic marker may help detect high-risk flu patients

July 17, 2017
Researchers have discovered an inherited genetic variation that may help identify patients at elevated risk for severe, potentially fatal influenza infections. The scientists have also linked the gene variant to a mechanism ...

Newly discovered gene variants link innate immunity and Alzheimer's disease

July 17, 2017
Three new gene variants, found in a genome wide association study of Alzheimer's disease (AD), point to the brain's immune cells in the onset of the disorder. These genes encode three proteins that are found in microglia, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.