Elusive gene mutations found for malignant brain tumor

August 4, 2011, Duke University Medical Center

A discovery by scientists at Duke University Medical Center and Johns Hopkins University could increase the chances for an effective combination of drug therapy to treat the second most common type of brain tumor.

For years scientists have been looking for the primary cancer genes involved in the development of oligodendrogliomas. Scientists knew the two chromosomes that held the probable , but not the particular gene information.

Now scientists at Duke and Johns Hopkins have discovered the most likely that researchers have been hunting for on 1 and 19. These genes were difficult to find until the technology improved, said Hai Yan, M.D., Ph.D., Duke associate professor of pathology and co-corresponding author of the study.

"The team used whole genome sequencing technology so that no genes would be excluded, and we found to our surprise that one gene, on chromosome 19, was mutated in six out of the seven initial tumor specimens we sequenced," Yan said. "A mutation frequency of 85 percent is very high."

The study was published in the Aug. 4 ahead-of-print issue of the journal Science.

"Whenever we find genes mutated in a majority of tumors, it is likely that the pathway regulated by that gene is critical for the development and biology of the tumor," says Nickolas , Ph.D., co-corresponding author and associate professor of oncology at the Johns Hopkins Kimmel Cancer Center.

The finding of two additional new genes involved in oligodendrogliomas increases the chances for an effective combination drug therapy for the tumor, Yan said. He envisions a combination cocktail of drugs similar to the combination-drug treatments taken by HIV patients that would target different pathways involved in cancer, and assist in reducing the chance of relapsing, increasing odds of success.

The genes they identified are tumor suppressor genes. The cancer-related pathways that involve these genes could become targets for future treatments, Yan said.

"Tumor suppressor genes like the ones we found, CIC or FUBP1, won't be targeted directly by small molecules, because the mutated gene products result in loss of function, but the pathways that these genes are involved in could be targeted," Yan said.

"Another very important feature is that the genes could be used as biomarkers to distinguish this type of cancer from other types of ."

The researchers found CIC on chromosome 19 and FUBP1 on chromosome 1 based on an initial study of seven oligodendrogliomas; they found six mutations and two mutations, respectively, in the seven tumors. Further study of 27 more of these tumors showed that there were 12 and three mutations of CIC and FUBP1, respectively. The two genes were rarely mutated in other types of cancers, indicating that they are oligodendroglioma-specific .

These tumors also contained a glioma (brain tumor) gene mutation identified earlier by Yan and colleagues, the IDH mutations.

Related Stories

Recommended for you

Probing RNA epigenetics and chromatin structures to predict drug resistance in leukemia

March 22, 2018
Drug resistance is a major obstacle to effective treatment for patients with cancer and leukemia. Epigenetic modifying drugs have been proven effective for some patients with hematologic malignancies, such as myelodysplastic ...

Gene-based test for urine detects, monitors bladder cancer

March 22, 2018
Researchers at The Johns Hopkins Kimmel Cancer Center have developed a test for urine, gathered during a routine procedure, to detect DNA mutations identified with urothelial cancers.

Researchers identify compound to prevent breast cancer cells from activating in brain

March 22, 2018
Researchers at Houston Methodist used computer modeling to find an existing investigational drug compound for leukemia patients to treat triple negative breast cancer once it spreads to the brain.

Could a pap test spot more than just cervical cancer?

March 22, 2018
Pap tests have helped drive down rates of cervical cancer, and a new study suggests they also could be used to detect other gynecologic cancers early.

Three-in-one molecule shows promise in helping certain breast cancer patients

March 22, 2018
A newly designed three-part molecule could be the one answer patients with a certain form of breast cancer are looking for, scientists report.

Researchers discover new anti-cancer protein

March 21, 2018
An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.