Hyperbaric treatment has significantly resuscitated activity in damaged brains

January 23, 2013, Tel Aviv University

Stroke, traumatic injury, and metabolic disorder are major causes of brain damage and permanent disabilities, including motor dysfunction, psychological disorders, memory loss, and more. Current therapy and rehab programs aim to help patients heal, but they often have limited success.

Now Dr. Shai Efrati of Tel Aviv University's Sackler Faculty of Medicine has found a way to restore a significant amount of in thought to be chronically damaged—even years after initial injury. Theorizing that high levels of oxygen could reinvigorate dormant neurons, Dr. Efrati and his fellow researchers, including Prof. Eshel Ben-Jacob of TAU's School of Physics and Astronomy and the Segol School of Neuroscience, recruited post-stroke patients for hyperbaric (HBOT)—sessions in high pressure chambers that contain oxygen-rich air—which increases in the body tenfold.

Analysis of brain imaging showed significantly increased neuronal activity after a two-month period of HBOT treatment compared to control periods of non-treatment, reported Dr. Efrati in . Patients experienced improvements such as a reversal of paralysis, increased sensation, and renewed use of language. These changes can make a world of difference in daily life, helping patients recover their independence and complete tasks such as bathing, cooking, climbing stairs, or reading a book.

Oxygen breathes new life into neurons

According to Dr. Efrati, there are several degrees of brain injury. Neurons impacted by have the energy to stay alive, but not enough to fire , he explains. HBOT aims to increase the supply of energy to these cells.

The brain consumes 20 percent of the body's oxygen, but that is only enough oxygen to operate five to ten percent of neurons at any one time. The regeneration process requires much more energy. The tenfold increase in oxygen levels during HBOT treatment supplies the necessary energy for rebuilding neuronal connections and stimulating inactive neurons to facilitate the healing process, explains Dr. Efrati.

For their study, the researchers sought post stroke patients whose condition was no longer improving. To assess the potential impact of HBOT treatment, the anatomical features and functionality of the brain were evaluated using a combination of CT scans to identify necrotic tissue, and SPECT scans to determine the metabolic activity level of the neurons surrounding damaged areas.

Seventy-four participants spanning 6 to 36 months post-stroke were divided into two groups. The first treatment group received HBOT from the beginning of the study, and the second received no treatment for two months, then received a two-month period of HBOT treatment. Treatment consisted of 40 two-hour sessions five times weekly in high pressure chambers containing oxygen-rich air. The results indicate that HBOT treatment can lead to significant improvement in brain function in post stroke patients even at chronically late stages, helping neurons strengthen and build new connections in damaged regions.

A potential avenue for prevention

Although the study focuses on patients only through three years post-stroke, Dr. Efrati has seen similar improvement in patients whose brain injuries occurred up to 20 years before, belying the concept that the brain has a limited window for growth and change. "The findings challenge the leading paradigm since they demonstrate beyond any doubt that neuroplasticity can still be activated for months and years after acute brain injury, thus revealing that many aspects of the brain remain plastic into adulthood," says Prof. Ben-Jacob.

This study also "opens the gate into a new territory of treatment," adds Dr. Efrati. The researchers are currently conducting a study on the benefits of HBOT for those with traumatic . This treatment also has potential as an anti-aging therapy, applicable in other disorders such as Alzheimer's disease and vascular dementia at their early stages.

"It is now understood that many brain disorders are related to inefficient energy supply to the brain," explains Dr. Efrati. "HBOT treatment could right such metabolic abnormalities before the onset of full dementia, where there is still potential for recovery."

Explore further: New understanding of brain chemistry could prevent brain damage after injury

Related Stories

New understanding of brain chemistry could prevent brain damage after injury

May 15, 2011
A protective molecule has been identified in the brain which, if used artificially, may prevent brain damage from the likes of stroke, head injury and Alzheimer's.

Traumatic brain injury linked with tenfold increase in stroke risk

July 28, 2011
If you suffer traumatic brain injury, your risk of having a stroke within three months may increase tenfold, according to a new study reported in Stroke: Journal of the American Heart Association.

Hypothermia protects the brain against damage during stroke

March 6, 2012
Thromboembolic stroke, caused by a blood clot in the brain, results in damage to the parts of the brain starved of oxygen. Breaking up the clot with tissue plasminogen activator (tPA) reduces the amount of damage, however, ...

New hope for survivors of stroke and traumatic brain injury

October 31, 2012
A new ground-breaking study about to be published in the Adis journal CNS Drugs provides clinical evidence that, for the first time, chronic neurological dysfunction from stroke or traumatic brain injury can rapidly improve ...

Diabetes drug may reduce brain damage after stroke

December 3, 2012
In a study in mice, scientists at Karolinska Institutet in Sweden have discovered a new potential therapy that may reduce brain damage following stroke in type 2 diabetic patients. The suggested drug is already approved for ...

Radiation-induced damage to brain tissue reversed by oxygen starvation in mice

January 18, 2012
Treating brain tumors with whole brain radiation therapy can damage healthy brain tissue, but a new study in mice reveals that limiting the oxygen supply, or hypoxia, can alleviate some of the cognitive impairment caused ...

Recommended for you

Research reveals atomic-level changes in ALS-linked protein

January 18, 2018
For the first time, researchers have described atom-by-atom changes in a family of proteins linked to amyotrophic lateral sclerosis (ALS), a group of brain disorders known as frontotemporal dementia and degenerative diseases ...

Fragile X finding shows normal neurons that interact poorly

January 18, 2018
Neurons in mice afflicted with the genetic defect that causes Fragile X syndrome (FXS) appear similar to those in healthy mice, but these neurons fail to interact normally, resulting in the long-known cognitive impairments, ...

How your brain remembers what you had for dinner last night

January 17, 2018
Confirming earlier computational models, researchers at University of California San Diego and UC San Diego School of Medicine, with colleagues in Arizona and Louisiana, report that episodic memories are encoded in the hippocampus ...

Recording a thought's fleeting trip through the brain

January 17, 2018
University of California, Berkeley neuroscientists have tracked the progress of a thought through the brain, showing clearly how the prefrontal cortex at the front of the brain coordinates activity to help us act in response ...

Midbrain 'start neurons' control whether we walk or run

January 17, 2018
Locomotion comprises the most fundamental movements we perform. It is a complex sequence from initiating the first step, to stopping when we reach our goal. At the same time, locomotion is executed at different speeds to ...

Miles Davis is not Mozart: The brains of jazz and classical pianists work differently

January 16, 2018
Keith Jarret, world-famous jazz pianist, once answered in an interview when asked if he would ever be interested in doing a concert where he would play both jazz and classical music: "No, that's hilarious. [...] It's like ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.