Immune cell suicide alarm helps destroy escaping bacteria

January 24, 2013
Shown in red are bacteria that have invaded host cells and escaped into the interior cytosolic compartment of the cell. Credit: Miao lab, UNC School of Medicine

Cells in the immune system called macrophages normally engulf and kill intruding bacteria, holding them inside a membrane-bound bag called a vacuole, where they kill and digest them.

Some bacteria thwart this effort by ripping the bag open and then escaping into the macrophage's nutrient-rich cytosol compartment, where they divide and could eventually go on to invade other cells.

But research from the University of North Carolina School of Medicine shows that have a suicide alarm system, a signaling to detect this escape into the cytosol. The pathway activates an enzyme, called caspase-11, that triggers a program in the macrophage to destroy itself.

"It's almost like a thief sneaking into the house not knowing an alarm will go off to knock down the walls and expose him to capture by the police," says study senior and corresponding author Edward Miao, PhD, assistant professor of microbiology and immunology at UNC. "In the macrophage, this , called pyroptosis, expels the from the cell, exposing it to other immune defense mechanisms."

A report of the research appears online in the journal Science on Thursday January 24, 2013.

Miao, also a member of the UNC Lineberger Comprehensive Cancer Center, says the new findings show that having this detection pathway protects mice from lethal infection with the type of vacuole-escaping species: B. thailandensis and B. pseudomallei.

Both are close relatives. But they differ in lethality. B. pseudomallei is potentially a . Used in a spray, it could potentially infect people via aerosol route, causing sickness and death. Moreover, it also could fall into a latent phase, "essentially turning into a 'sleeper' inside the lungs and hiding there for decades," Miao explains. In contrast, B. thailandensis, which shares many properties with its species counterpart, is not normally able to cause any disease or infection

These are ubiquitous throughout S.E. Asia, and were it not for the caspase-11 pathway defense system, that part of the world could be uninhabitable, Miao points out.

This grim possibility clearly emerged in the study. Mice that lack the caspase-11 detection pathway succumb to infection not only by B. pseudomallei, but also to the normally benign B. thailandensis. "Thus caspase-11 is critical for surviving exposure to ubiquitous environmental pathogens," the authors conclude.

Miao points to research elsewhere showing that the pathway's abnormal activation in people with septic shock, overwhelming bacterial infection of the blood, is associated with death. "We discovered what the pathway is supposed to do, which may help find ways to tone it down in people with that critical condition.

As to bioterrorism, the researcher says it may be possible to use certain drugs already on the market that safely induce the caspase-11 pathway. "Since this pathway requires pre-stimulation with interferon cytokines, it is conceivable that pre-treating people with interferon drugs could ameliorate a bioterror incident. This could be quite important in the case of Burkholderia, since these bacteria are naturally resistant to numerous antibiotics.

"But first we have to find out if they would work in animal models, and consider the logistics of interferon stockpiling, which are currently cost prohibitive."

Explore further: Long-ignored enzyme turns out to be key to killing infectious bacteria

More information: "Caspase-11 Protects Against Bacteria That Escape the Vacuole", Science, 2013.

Related Stories

Long-ignored enzyme turns out to be key to killing infectious bacteria

June 11, 2012
New research shows that an enzyme that has long been considered relatively useless to the immune response instead has an important role in setting up immune cells to kill infection-causing bacteria.

Compound in broccoli sprouts cleans out diseased lungs: Experimental treatment for COPD in development

April 13, 2011
Researchers at the Johns Hopkins Bloomberg School of Public Health have developed a non-steroid based strategy for improving the lung's innate immune defense and decreasing inflammation that can be a problem for patients ...

How the immune system fights back against anthrax infections

June 16, 2011
Scientists at the University of California, San Diego School of Medicine and Skaggs School of Pharmacy and Pharmaceutical Sciences have uncovered how the body's immune system launches its survival response to the notorious ...

Recommended for you

Genetic immune deficiency could hold key to severe childhood infections

July 18, 2017
A gene mutation making young children extremely vulnerable to common viruses may represent a new type of immunodeficiency, according to a University of Queensland researcher.

What are the best ways to diagnose and manage asthma?

July 18, 2017
What are the best ways to diagnose and manage asthma in adults? This can be tricky because asthma can stem from several causes and treatment often depends on what is triggering the asthma.

Large multi-ethnic study identifies many new genetic markers for lupus

July 17, 2017
Scientists from an international consortium have identified a large number of new genetic markers that predispose individuals to lupus.

Study finds molecular explanation for struggles of obese asthmatics

July 17, 2017
A large, bouquet-shaped molecule called surfactant protein A, or SP-A, may explain why obese asthma patients have harder-to-treat symptoms than their lean and overweight counterparts, according to a new study led by scientists ...

Team identifies potential cause for lupus

July 14, 2017
Leading rheumatologist and Feinstein Institute for Medical Research Professor Betty Diamond, MD, may have identified a protein as a cause for the adverse reaction of the immune system in patients suffering from lupus. A better ...

Immunosuppression underlies resistance to anti-angiogenic therapy

July 14, 2017
A Massachusetts General Hospital (MGH) research team has identified a novel mechanism behind resistance to angiogenesis inhibitors - drugs that fight cancer by suppressing the formation of new blood vessels. In their report ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

Vsha
3 / 5 (2) Jan 25, 2013
"It's almost like a thief sneaking into the house not knowing an alarm will go off to knock down the walls and expose him to capture by the police," - A better analogy is that the alarm triggers an explosion that kills the thief and destroys the house he came to burgle.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.