Study: Most-used diabetes drug works in different way than previously thought

January 6, 2013, University of Pennsylvania School of Medicine
Proposed model: Metformin enters the cell and acts on the mitochondria, causing increased AMP. Elevated cellular AMP levels inhibit membrane bound adenylyl cyclase, causing a reduction in cellular cAMP levels and decreased PKA activation and target phosphorylation. Credit: Morris Birnbaum, M.D., Ph.D., Perelman School of Medicine, University of Pennsylvania; Nature

A team, led by senior author Morris J. Birnbaum, MD, PhD, the Willard and Rhoda Ware Professor of Medicine, with the Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, found that the diabetes drug metformin works in a different way than previously understood. Their research in mice found that metformin suppresses the liver hormone glucagon's ability to generate an important signaling molecule, pointing to new drug targets. The findings were published online this week in Nature.

For fifty years, one of the few classes of therapeutics effective in reducing the overactive associated with diabetes has been the biguanides, which includes metformin, the most frequently prescribed drug for type 2 diabetes. The inability of insulin to keep liver glucose output in check is a major factor in the of type 2 diabetes and other diseases of .

"Overall, metformin lowers blood glucose by decreasing liver production of glucose," says Birnbaum. "But we didn't really know how the drug accomplished that."

Imperfectly Understood

Despite metformin's success, its mechanism of action remained imperfectly understood. About a decade ago, researchers suggested that metformin reduces glucose synthesis by activating the enzyme AMPK. But this understanding was challenged by genetic experiments in 2010 by collaborators on the present Nature study. Coauthors Marc Foretz and Benoit Viollet from Inserm, CNRS, and Université Paris Descartes, Paris, found that the livers of mice without AMPK still responded to metformin, indicating that were being controlled outside of the pathway.

Taking another look at how glucose is regulated normally, the team knew that when there is no food intake and glucose decreases, glucagon is secreted from the pancreas to signal the liver to produce glucose. They then asked if metformin works by stopping the glucagon cascade.

The Nature study describes a novel mechanism by which metformin antagonizes the action of glucagon, thus reducing fasting glucose levels. The team showed that metformin leads to the accumulation of AMP in mice, which inhibits an enzyme called adenylate cyclase, thereby reducing levels of cyclic AMP and protein kinase activity, eventually blocking glucagon-dependent glucose output from liver cells.

From this new understanding of metformin's action, Birnbaum and colleagues surmise that adenylate cyclase could be a new drug target by mimicking the way in which it is inhibited by metformin. This strategy would bypass metformin's affect on a cell's mitochondria to make energy, and possibility avoid the adverse side effects experienced by many people who take metformin, perhaps even working for those patients resistant to metformin.

Explore further: Metformin improves blood glucose levels and BMI in very obese children

Related Stories

Metformin improves blood glucose levels and BMI in very obese children

December 10, 2012
Metformin therapy has a beneficial treatment effect over placebo in improving body mass index (BMI) and fasting glucose levels in obese children, according to a recent study accepted for publication in The Endocrine Society's ...

Metformin and exercise combination less effective for glucose control

August 19, 2011
University of Alberta researchers looking at the effects of metformin and exercise in Type 2 diabetes patients found that a combination of these modalities didn't lower glucose control as much as hoped. Surprisingly, study ...

Metal binding important for metformin action

April 14, 2012
(HealthDay) -- The ability of metformin to bind mitochondrial copper may be essential to its mechanism of action, according to a study published online April 9 in Diabetes.

Imeglimin beneficial as add-on to metformin in T2DM

December 14, 2012
(HealthDay)—For patients with type 2 diabetes inadequately controlled by metformin alone, addition of the new oral anti-diabetes agent imeglimin improves glycemic control with good tolerability and safety, according to ...

Considerably more patients may benefit from effective antidiabetic drug

September 17, 2012
The antidiabetic drug metformin is not prescribed for patients with reduced kidney function because the risk of adverse effects has been regarded as unacceptably high. A study at Sahlgrenska Academy, University of Gothenburg, ...

Recommended for you

Genetic discovery may help better identify children at risk for type 1 diabetes

January 17, 2018
Six novel chromosomal regions identified by scientists leading a large, prospective study of children at risk for type 1 diabetes will enable the discovery of more genes that cause the disease and more targets for treating ...

Women who have gestational diabetes in pregnancy are at higher risk of future health issues

January 16, 2018
Women who have gestational diabetes mellitus (GDM) during pregnancy have a higher than usual risk of developing type 2 diabetes, hypertension, and ischemic heart disease in the future, according to new research led by the ...

Diabetes gene found that causes low and high blood sugar levels in the same family

January 15, 2018
A study of families with rare blood sugar conditions has revealed a new gene thought to be critical in the regulation of insulin, the key hormone in diabetes.

Discovery could lead to new therapies for diabetics

January 12, 2018
New research by MDI Biological Laboratory scientist Sandra Rieger, Ph.D., and her team has demonstrated that an enzyme she had previously identified as playing a role in peripheral neuropathy induced by cancer chemotherapy ...

Enzyme shown to regulate inflammation and metabolism in fat tissue

January 11, 2018
The human body has two primary kinds of fat—white fat, which stores excess calories and is associated with obesity, and brown fat, which burns calories in order to produce heat and has garnered interest as a potential means ...

Big strides made in diabetes care

January 5, 2018
(HealthDay)—This past year was a busy, productive one for diabetes research and care.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.