Multiple sclerosis drug may one day treat colorectal cancer

January 9, 2013
This is Sarah Spiegel, Ph.D., the primary investigator. Credit: Virginia Commonwealth University

After uncovering a mechanism that promotes chronic intestinal inflammation and the development of colorectal cancer, scientists from Virginia Commonwealth University Massey Cancer Center have found that fingolimod, a drug currently approved for the treatment of multiple sclerosis, could potentially eliminate or reduce the progression of colitis-associated cancer (CAC).

The study, published online in the journal Cancer Cell, was led by Sarah Spiegel, Ph.D., Mann T. and Sara D. Lowry Chair in Oncology, co-leader of the Cancer Cell Signaling program at VCU Massey Cancer Center and chair of the Biochemistry and Molecular Biology Department at the VCU School of Medicine. Spiegel's team discovered that increased production of an enzyme known as sphingosine kinase 1 (SphK1) causes cells lining the to produce more of a signaling molecule known as sphingosine-1-phosphate (S1P), which activates a variety of that lead to chronic intestinal inflammation and the development and progression of CAC. The researchers then used animal models to demonstrate that the drug fingolimod decreased expression of SphK1 and S1P's receptor, S1PR1, which subsequently interfered with the development and progression of CAC, even after tumors were established.

"Perhaps the most significant aspect of this study is the therapeutic potential of fingolimod in the treatment of colitis-associated cancer," says Spiegel. "Since this drug is already approved for clinical use, we're hoping to initiate a clinical trial to study its efficacy in patients with CAC in combination with approved therapies."

Essentially, the researchers discovered a self-feeding loop that results in chronic and increases the progression of CAC. The team showed that increased production of SphK1 and S1P lead to sustained activation of NF-kB and Stat3, which are both proteins called that control the way DNA is transcribed in a cell's nucleus in order to respond to environmental stimuli. This increased activation of NF-kB and Stat3 led to an increased production of TNF-a and IL-6, which are small pro-inflammatory molecules secreted by immune system cells. The increased inflammation, in turn, led to increased production of SphK1 and S1P, which continued the malicious cycle.

This is the first time that SphK1 and S1P have been linked to NF-kB, , chronic inflammation and CAC.

"Because one of the consequences of inflammatory bowel diseases is an increased risk of developing colorectal cancer, the next step in our research is to examine blood samples from patients with irritable bowel syndrome and colitis-associated cancer to measure levels of S1P," says Spiegel. "Colorectal cancer is one of the leading causes of cancer-related deaths, and we're hopeful that this research will lead to more effective treatments."

Explore further: Decreasing cancer risk associated with inflammatory bowel disease

More information: www.sciencedirect.com/science/ … ii/S1535610812004928

Related Stories

Decreasing cancer risk associated with inflammatory bowel disease

July 9, 2012
Inflammatory bowel disease is caused by chronic inflammation , which leads to damage of the intestinal epithelium.

Recommended for you

Immune-cell numbers predict response to combination immunotherapy in melanoma

July 20, 2017
Whether a melanoma patient will better respond to a single immunotherapy drug or two in combination depends on the abundance of certain white blood cells within their tumors, according to a new study conducted by UC San Francisco ...

Discovery could lead to better results for patients undergoing radiation

July 19, 2017
More than half of cancer patients undergo radiotherapy, in which high doses of radiation are aimed at diseased tissue to kill cancer cells. But due to a phenomenon known as radiation-induced bystander effect (RIBE), in which ...

Definitive genomic study reveals alterations driving most medulloblastoma brain tumors

July 19, 2017
The most comprehensive analysis yet of medulloblastoma has identified genomic changes responsible for more than 75 percent of the brain tumors, including two new suspected cancer genes that were found exclusively in the least ...

Novel CRISPR-Cas9 screening enables discovery of new targets to aid cancer immunotherapy

July 19, 2017
A novel screening method developed by a team at Dana-Farber/Boston Children's Cancer and Blood Disorders Center—using CRISPR-Cas9 genome editing technology to test the function of thousands of tumor genes in mice—has ...

Combining CAR T cells with existing immunotherapies may overcome resistance in glioblastomas

July 19, 2017
Genetically modified "hunter" T cells successfully migrated to and penetrated a deadly type of brain tumor known as glioblastoma (GBM) in a clinical trial of the new therapy, but the cells triggered an immunosuppressive tumor ...

How CD44s gives brain cancer a survival advantage

July 19, 2017
Understanding the mechanisms that give cancer cells the ability to survive and grow opens the possibility of developing improved treatments to control or cure the disease. In the case of glioblastoma multiforme, the deadliest ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.