Plvap/PV1 critical to formation of the diaphragms in endothelial cells

January 3, 2013, Dartmouth-Hitchcock Medical Center

Dartmouth scientists have demonstrated the importance of the gene Plvap and the structures it forms in mammalian physiology in a study published in December by the journal Developmental Cell.

"The knowledge generated and the animal models created will allow a better understanding of the role of the gene in diseases and will help validate its usefulness as a therapeutic or diagnostic ," said lead author Radu V. Stan, MD, associate professor, Geisel School of Medicine at Dartmouth, and member of the Dartmouth-Hitchcock Norris Cotton Cancer Center (NCCC).

The study demonstrates that plasmalemma vesicle associated protein (PV1), a vertebrate gene specifically expressed in the vascular endothelial cells, is critical for the formation of the diaphragms of endothelial caveolae, fenestrae and transendothelial channels. Although discovered in the 1960s by , the function of the diaphragms was previously unknown. Using mice with loss and gain of PV1 function Dartmouth scientists demonstrated that the diaphragms of fenestrae are critical for maintenance of basal permeability, the homeostasis of in terms of protein and lipid blood composition, and ultimately survival.

PV1 has newly discovered roles in cancer and in various infectious and . "The knowledge generated and the animal models created will allow a better understanding of the role of the gene in these diseases and to validate its usefulness as a therapeutic or diagnostic target," said Stan.

In the absence of such diaphragms, extravasation produces a noninflammatory protein-losing enteropathy resulting in protein calorie malnutrition and ultimately death.

"Our results and the mouse models we have created provide the foundations for evaluating numerous aspects of basal permeability in fenestrated vascular beds," said Stan.

Explore further: New molecular pathway regulating angiogenesis may fight retinal disease, cancers

Related Stories

New molecular pathway regulating angiogenesis may fight retinal disease, cancers

May 29, 2011
Scientists identify in the journal Nature a new molecular pathway used to suppress blood vessel branching in the developing retina – a finding with potential therapeutic value for fighting diseases of the retina and ...

Enzyme offers new therapeutic target for cancer drugs

June 21, 2012
Researchers at the University of California, San Diego School of Medicine have uncovered a new signal transduction pathway specifically devoted to the regulation of alternative RNA splicing, a process that allows a single ...

Researchers identify drug target for atherosclerosis

July 25, 2011
(Medical Xpress) -- UC Davis researchers have made a significant step forward in the search for ways to reduce heart attack and stroke risk.

Recommended for you

Boosting cancer therapy with cross-dressed immune cells

January 22, 2018
Researchers at EPFL have created artificial molecules that can help the immune system to recognize and attack cancer tumors. The study is published in Nature Methods.

Workouts may boost life span after breast cancer

January 22, 2018
(HealthDay)—Longer survival after breast cancer may be as simple as staying fit, new research shows.

Cancer patients who tell their life story find more peace, less depression

January 22, 2018
Fifteen years ago, University of Wisconsin–Madison researcher Meg Wise began interviewing cancer patients nearing the end of life about how they were living with their diagnosis. She was surprised to find that many asked ...

Single blood test screens for eight cancer types

January 18, 2018
Johns Hopkins Kimmel Cancer Center researchers developed a single blood test that screens for eight common cancer types and helps identify the location of the cancer.

Researchers find a way to 'starve' cancer

January 18, 2018
Researchers at Vanderbilt University Medical Center (VUMC) have demonstrated for the first time that it is possible to starve a tumor and stop its growth with a newly discovered small compound that blocks uptake of the vital ...

How cancer metastasis happens: Researchers reveal a key mechanism

January 18, 2018
Cancer metastasis, the migration of cells from a primary tumor to form distant tumors in the body, can be triggered by a chronic leakage of DNA within tumor cells, according to a team led by Weill Cornell Medicine and Memorial ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.