Prostate cancer cells thrive on stress

January 25, 2013, Journal of Clinical Investigation

Not surprisingly, a cancer diagnosis creates stress. And patients with prostate cancer show higher levels of anxiety compared to other cancer patients.

A new study by researchers at Wake Forest Baptist Medical Center indicates that stress is not just an emotional side effect of the diagnosis; it also can reduce the effectiveness of prostate cancer drugs and accelerate the development of prostate cancer.

The findings are published in the February issue of the Journal of Clinical Investigation.

The Wake Forest Baptist team, headed by George Kulik, D.V.M., Ph.D., associate professor of cancer biology, tested the effects of behavioral stress in two different mouse models of prostate cancer.

One model used mice that were implanted with human prostate cancer cells and treated with a drug that is currently in clinical trial for prostate cancer treatment. When the mice were kept calm and free of stress, the drug destroyed prostate cancer cells and inhibited tumor growth. However, when the mice were stressed, the cancer cells didn't die and the drug did not inhibit tumor growth.

In the second model, mice genetically modified to develop prostate cancer were used. When these mice were repeatedly stressed, the size of prostate tumors increased. When the mice were treated with bicalutamide, a drug currently used to treat prostate cancer, their prostate tumors decreased in size. However, if mice were subjected to repeated stress, the prostate tumors didn't respond as well to the drug.

After analyzing the data, the Wake Forest Baptist researchers identified the cell signaling pathway by which epinephrine, a hormone also known as adrenaline, sets off the cellular chain reaction that controls cell death. Considering that prostate cancer diagnosis increases stress and anxiety levels, stress-induced activation of the signaling pathway that turns off the cell death process may lead to a vicious cycle of stress and cancer progression, Kulik said.

Yet in both models in which the mice were given beta-blocker, stress did not promote prostate tumor growth. Beta-blocker is a drug that inhibits the activation of anti-death signaling by epinephrine.

"Providing beta-blockers to prostate cancer patients who had increased epinephrine levels could improve the effectiveness of anti-cancer therapies," Kulik said. "Our findings could be used to indentify prostate cancer patients who will benefit from stress reduction or from pharmacological inhibition of stress-inducing signaling."

The researchers now plan to test the same signaling mechanism that was identified in mice to determine if it also works in the same way in human prostates, Kulik said.

"We are at the very beginning of understanding complex stress-cancer interactions with multifaceted responses to stress that affect cancer cells, tumor microenvironment, and the organism overall," he said. "We hope that components of this signaling pathway could be used as biomarkers to predict whether and how a given tumor will respond to stress and anti-stress therapies."

Explore further: Researchers develop novel treatment for prostate cancer

More information: Behavioral stress accelerates prostate cancer development in mice, 2013;123(2):874–886. doi:10.1172/JCI63324

Why stress is BAD for cancer patients, 2013;123(2):558–560. doi:10.1172/JCI67887

Related Stories

Researchers develop novel treatment for prostate cancer

November 29, 2012
(Medical Xpress)—The work of a team of Wake Forest researchers developing a novel drug for prostate cancer treatment is featured on the cover of the Nov. 26 issue of the Journal of Medicinal Chemistry.

New insights into links between stress and cancer

June 1, 2011
(Medical Xpress) -- Trinity College Dublin researchers have discovered that blocking a particular stress response can significantly reduce the metastasis (or spread) of breast cancer.

Stress fuels breast cancer metastasis to bone

July 17, 2012
Stress can promote breast cancer cell colonization of bone, Vanderbilt Center for Bone Biology investigators have discovered.

Clinical trial targets advanced prostate cancer

December 3, 2012
Select patients with advanced prostate cancer may benefit from a Georgia Health Sciences University Cancer Center clinical trial that looks to improve survival rates of the FDA-approved prostate cancer drug Provenge.

Recommended for you

Successful anti-PD-1 therapy requires interaction between CD8+ T cells and dendritic cells

December 11, 2018
A team led by a Massachusetts General Hospital (MGH) investigator has found that successful cancer immunotherapy targeting the PD-1 molecule requires interaction between cytotoxic CD8+ T cells, which have been considered ...

Loss of two genes drives a deadly form of colorectal cancer, reveals a potential treatment

December 11, 2018
Colorectal cancers arise from earlier growths, called polyps, found on the inner surface of the colon. Scientists are now learning that polyps use two distinct molecular pathways as they progress to cancer, called the "conventional" ...

Taking uncertainty out of cancer prognosis

December 11, 2018
A cancer diagnosis tells you that you have cancer, but how that cancer will progress is a terrifying uncertainty for most patients. Researchers at Cold Spring Harbor Laboratory (CSHL) have now identified a specific class ...

Pushing closer to a new cancer-fighting strategy

December 11, 2018
A molecular pathway that's frequently mutated in many different forms of cancer becomes active when cells push parts of their membranes outward into bulging protrusions, Johns Hopkins researchers report in a new study. The ...

Scientists have identified and modelled a distinct biology for paediatric AML

December 11, 2018
Scientists have identified and modelled a distinct biology for paediatric acute myeloid leukaemia, one of the major causes of death in children.

HER2 mutations can cause treatment resistance in metastatic ER-positive breast cancer

December 11, 2018
Metastatic breast cancers treated with hormone therapy can become treatment-resistant when they acquire mutations in the human epidermal growth factor receptor 2 (HER2) that were not present in the original tumor, reports ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.