Stress fuels breast cancer metastasis to bone

July 17, 2012
Preston Campbell, left, and Florent Elefteriou, Ph.D., in the Vanderbilt Center for Bone Biology. The researchers report in PLoS Biology that stress fuels breast cancer cell metastasis to bone, and they show that it's possible to prevent cancer metastasis to bone in mice. Credit: John Russell/Vanderbilt University

Stress can promote breast cancer cell colonization of bone, Vanderbilt Center for Bone Biology investigators have discovered.

The studies, reported July 17 in PLoS Biology, demonstrate in that activation of the sympathetic nervous system – the "fight-or-flight" response to – primes the environment for cell . The researchers were able to prevent breast cancer cell lesions in bone using propranolol, a cardiovascular medicine that inhibits sympathetic nervous system signals.

Metastasis – the spread of cancer cells to distant organs, including bone – is more likely to kill patients than a primary breast tumor, said Florent Elefteriou, Ph.D., director of the Vanderbilt Center for Bone Biology.

"Preventing metastasis is really the goal we want to achieve," he said.

Elefteriou and his colleagues knew from their previous studies that the sympathetic nervous system stimulated bone remodeling, and that it used some of the same signaling molecules that have been implicated in breast cancer metastasis to bone.

"We came to the hypothesis that sympathetic activation might remodel the bone environment and make it more favorable for cancer cells to metastasize there," Elefteriou said.

Evidence from the clinic supported this notion. Breast cancer patients who suffered from stress or depression following their primary treatment had shorter survival times. Both stress and depression activate the sympathetic nervous system.

To explore this possible link, the researchers studied cancer cell metastasis in mice. They followed fluorescently "tagged" human breast cancer cells that were injected into the mouse heart to model the stage of metastasis when breast leave the primary site and move through the circulation.

They found that treating the mice with a drug that mimics sympathetic nervous system activation caused more cancer lesions in bone. Using physical restraint to stress the mice and activate the sympathetic also caused more cancer lesions in bone. Treating the restrained mice with propranolol, one of a family of blood pressure medicines called "beta-blockers," reduced the number of bone lesions.

The demonstrated that activation increases bone levels of a signaling molecule called RANKL, which is known to promote the formation of osteoclasts – bone cells that break down bone tissue. RANKL has also been implicated in cell migration, and Elefteriou and colleagues were able to show that breast cancer cell migration to the bone depends on RANKL.

The findings suggest that beta-blockers or drugs that interfere with RANKL signaling, such as denosumab, may be useful in preventing breast cancer cell metastasis to bone. Propranolol and other beta-blockers are inexpensive, well characterized, and safe in most patients. They may be a good choice for long-term treatment if future studies in patients with breast cancer confirm their ability to block cancer cell metastasis to bone, Elefteriou said.

"If something as simple as a beta blocker could prevent cancer metastasis to bone, this would impact the treatment of millions of patients worldwide," he said.

Efforts to reduce stress and depression in patients with cancer may have unappreciated benefits in terms of metastasis prevention, he added.

Explore further: Heparin-like compounds inhibit breast cancer metastasis to bone

Related Stories

Heparin-like compounds inhibit breast cancer metastasis to bone

May 21, 2012
Researchers from VTT Technical Research Centre of Finland have in collaboration with the University of Turku, Indiana University and two Finnish companies, Biotie Therapies Corp. and Pharmatest Services Ltd, discovered a ...

Denosumab delays development of prostate cancer bone metastasis

November 16, 2011
An international clinical trial has found that treatment with a drug that suppresses the normal breakdown of bone can delay the development of bone metastases in men with prostate cancer. The study, receiving Online First ...

Researchers investigate stress and breast cancer

September 20, 2011
It's a common belief that there's a link between chronic stress and an increased risk of cancer. In new research published online by the International Journal of Cancer, scientists at The University of Western Ontario have ...

Recommended for you

Clinical trial suggests new cell therapy for relapsed leukemia patients

November 20, 2017
A significant proportion of children and young adults with treatment-resistant B-cell leukemia who participated in a small study achieved remission with the help of a new form of gene therapy, according to researchers at ...

Researchers discover a new target for 'triple-negative' breast cancer

November 20, 2017
So-called "triple-negative" breast cancer is a particularly aggressive and difficult-to-treat form. It accounts for only about 10 percent of breast cancer cases, but is responsible for about 25 percent of breast cancer fatalities.

Study reveals new mechanism used by cancer cells to disarm attacking immune cells

November 20, 2017
A new study by researchers at The Ohio State University Comprehensive Cancer Center - James Cancer Hospital and Solove Research Institute (OSUCCC - James) identifies a substance released by pancreatic cancer cells that protects ...

Cell-weighing method could help doctors choose cancer drugs

November 20, 2017
Doctors have many drugs available to treat multiple myeloma, a type of blood cancer. However, there is no way to predict, by genetic markers or other means, how a patient will respond to a particular drug. This can lead to ...

Lung cancer triggers pulmonary hypertension

November 17, 2017
Shortness of breath and respiratory distress often increase the suffering of advanced-stage lung cancer patients. These symptoms can be triggered by pulmonary hypertension, as scientists at the Max Planck Institute for Heart ...

Researchers discover an Achilles heel in a lethal leukemia

November 16, 2017
Researchers have discovered how a linkage between two proteins in acute myeloid leukemia enables cancer cells to resist chemotherapy and showed that disrupting the linkage could render the cells vulnerable to treatment. St. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.