New technique comprehensively generates three-dimensional maps of gene expression in the brain

January 11, 2013
Transcriptome tomography. Tissue sections in each of three orthogonal planes are fractionated, and 36,558 gene expression densities in them are measured with microarrays and then reconstructed to generate 3D maps (an example map is shown). Credit: 2012 Yuko Okamura-Oho, RIKEN Advanced Science Institute

A research team led by Yuko Okamura-Oho and Hideo Yokota of the RIKEN Advanced Science Institute, Wako, has developed a novel technique for three-dimensional (3D) mapping of gene expression patterns onto brain structures. The technique, known as transcriptome tomography, combines tissue sectioning with microarray technology and produces comprehensive maps of the density and location of gene expression, which have a higher resolution than the maps produced by existing methods.

To produce their first dataset, the researchers sliced six mouse brains into five micrometer sections, in each of three anatomical planes. They collected the sections in batches of 200 to produce 'fractions' of 1-millimeter thickness that were used for microarray analysis. They then treated 61 such fractions with more than 36,000 RNA probes and reconstructed the data to produce of gene expression throughout the whole mouse brain.

Transcriptome tomography is semi-automated, making it more cost-effective and faster than existing manual approaches—it took the researchers just one month to generate the first dataset. The technique can also be used to map the tissue distribution of any type of , such as proteins, lipids, sugars and microRNAs.

Okamura-Oho and her colleagues validated the technique by comparing their first dataset to pre-existing ones generated by other methods. They also analyzed the expression patterns of the , which when mutated causes Huntington's disease, a progressive neurodegenerative condition characterized by the death of neurons in the basal ganglia, followed by cell death in the .

The analysis revealed that Huntingtin was expressed at high levels in brain regions known to be severely affected by the condition, such as the basal ganglia, but at significantly lower levels in areas that are less vulnerable, such as the midbrain and cerebellum. "We could make expression maps in 20-times higher resolution comparable to MRI. Such maps have the potential to reveal more detailed disease-related abnormalities with continuous technical advancing," says Okamura-Oho.

Transcriptome tomography datasets can be uploaded to Waxholm Space, a co-ordinate-based space for open resources. The space facilitates the creation of researchers' own datasets that can then be shared and analyzed in the space.

Explore further: Two heads are better than one: Gene expression reveals molecular mechanisms underlying evolution of cerebral cortex

More information: Okamura-Oho, Y., Shimokawa, K., Takemoto, S., Hirakiyama, A., Nakamura, S., Tsujimura, Y., Nishimura, M., Kasukawa, T., Masumoto, K., Nikaido, I. et al. Transcriptome tomography for brain analysis in the web-accessible anatomical space. PLoS ONE 7, e45373 (2012). www.plosone.org/article/info%3 … journal.pone.0045373

Related Stories

Two heads are better than one: Gene expression reveals molecular mechanisms underlying evolution of cerebral cortex

November 9, 2012
Dramatic expansion of the human cerebral cortex, over the course of evolution, accommodated new areas for specialized cognitive function, including language. Understanding the genetic mechanisms underlying these changes, ...

Data release from the Allen Institute for Brain Science expands online atlas offerings

June 7, 2012
The Allen Institute for Brain Science announced today its latest public data release, enhancing online resources available via the Allen Brain Atlas data portal and expanding its application programming interface (API).

Fine-scale analysis of the human brain yields insight into its distinctive composition

April 12, 2012
Scientists at the Allen Institute for Brain Science have identified similarities and differences among regions of the human brain, among the brains of human individuals, and between humans and mice by analyzing the expression ...

Recommended for you

Scientists provide insight into genetic basis of neuropsychiatric disorders

July 21, 2017
A study by scientists at the Children's Medical Center Research Institute at UT Southwestern (CRI) is providing insight into the genetic basis of neuropsychiatric disorders. In this research, the first mouse model of a mutation ...

Scientists identify new way cells turn off genes

July 19, 2017
Cells have more than one trick up their sleeve for controlling certain genes that regulate fetal growth and development.

South Asian genomes could be boon for disease research, scientists say

July 18, 2017
The Indian subcontinent's massive population is nearing 1.5 billion according to recent accounts. But that population is far from monolithic; it's made up of nearly 5,000 well-defined sub-groups, making the region one of ...

Mutant yeast reveals details of the aberrant genomic machinery of children's high-grade gliomas

July 18, 2017
St. Jude Children's Research Hospital biologists have used engineered yeast cells to discover how a mutation that is frequently found in pediatric brain tumor high-grade glioma triggers a cascade of genomic malfunctions.

Late-breaking mutations may play an important role in autism

July 17, 2017
A study of nearly 6,000 families, combining three genetic sequencing technologies, finds that mutations that occur after conception play an important role in autism. A team led by investigators at Boston Children's Hospital ...

Newly identified genetic marker may help detect high-risk flu patients

July 17, 2017
Researchers have discovered an inherited genetic variation that may help identify patients at elevated risk for severe, potentially fatal influenza infections. The scientists have also linked the gene variant to a mechanism ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.