Two heads are better than one: Gene expression reveals molecular mechanisms underlying evolution of cerebral cortex

November 9, 2012
Gene expression patterns in the brain of the newborn common marmoset revealed by in situ hybridization. Credit: 2012 Tomomi Shimogori, RIKEN Brain Science Institute

Dramatic expansion of the human cerebral cortex, over the course of evolution, accommodated new areas for specialized cognitive function, including language. Understanding the genetic mechanisms underlying these changes, however, remains a challenge to neuroscientists.

A team of researchers in Japan has now elucidated the mechanisms of cortical evolution. They used molecular techniques to compare the in mouse and monkey brains. 

Using the technique called in situ hybridization to visualize the distribution of mRNA transcripts, Okano, Shimogori and their colleagues examined the expression patterns of genes that are known to regulate development of the . They compared these patterns to those of the same genes in the brain of the common marmoset. They found that most of the genes had similar expression patterns in mice and marmosets, but that some had strikingly different patterns between the two species. Notably, some areas of the visual and prefrontal showed expression patterns that were unique to marmosets. 

The researchers observed that the Btbd3 gene, for example, which encodes a transcription factor that regulates the expression of other genes, was expressed throughout the visual cortex of the mouse but restricted to layer 4 of the , or the V1 area, of the marmoset. Similarly, the gene encoding connective tissue growth factor (CTGF) was expressed throughout the mouse cortex in layer 5, but was restricted to layer 4 of area V1 in the marmoset.

Some of the genes that are expressed widely throughout the mouse prefrontal cortex were likewise restricted to specific layers and sub-regions in the marmoset. Okano, Shimogori and colleagues also noted differences in expression patterns in the subplate region of the developing cortex, which contains the first neurons to receive inputs from the thalamus, a deep that relays sensory information to the cortex.

The researchers also found differences in gene expression within regions that connect the prefrontal cortex and hippocampus, a structure that is critical for learning and memory.

"The distinct gene expression patterns and anatomical differences between marmosets and mice provide enormous insights into the evolution of the brain," says Okano. "We are interested in characterizing the functions of genes that could act as driving forces of brain evolution and have started to investigate several candidate genes. Such approaches will eventually lead to a better understanding of brain function and mental disorders."

Explore further: Confirmation of repeated patterns of neurons indicates stereotypical organization throughout brain's cerebral cortex

More information: Mashiko, H., Yoshida, A.C., Kikuchi, S.S., Niimi, K., Takahashi, E., Aruga, J., Okano, H. & Shimogori, T. Comparative anatomy of marmoset and mouse cortex from genomic expression. Journal of Neuroscience 32, 5039–5053 (2012). www.jneurosci.org/content/32/15/5039.short

Related Stories

Confirmation of repeated patterns of neurons indicates stereotypical organization throughout brain's cerebral cortex

May 11, 2012
Neurons are arranged in periodic patterns that repeat over large distances in two areas of the cerebral cortex, suggesting that the entire cerebral cortex has a stereotyped organization, reports a team of researchers led ...

Fine-scale analysis of the human brain yields insight into its distinctive composition

April 12, 2012
Scientists at the Allen Institute for Brain Science have identified similarities and differences among regions of the human brain, among the brains of human individuals, and between humans and mice by analyzing the expression ...

Changes in the path of brain development make human brains unique

December 6, 2011
How the human brain and human cognitive abilities evolved in less than six million years has long puzzled scientists. A new study conducted by scientists in China and Germany, and published December 6 in the online, open-access ...

Study identifies gene expression abnormalities in autism

March 22, 2012
A study led by Eric Courchesne, PhD, director of the Autism Center of Excellence at the University of California, San Diego School of Medicine has, for the first time, identified in young autism patients genetic mechanisms ...

Recommended for you

Touching helps build the sexual brain

September 21, 2017
Hormones or sexual experience? Which of these is crucial for the onset of puberty? It seems that when rats are touched on their genitals, their brain changes and puberty accelerates. In a new study publishing September 21 ...

Gene immunotherapy protects against multiple sclerosis in mice

September 21, 2017
A potent and long-lasting gene immunotherapy approach prevents and reverses symptoms of multiple sclerosis in mice, according to a study published September 21st in the journal Molecular Therapy. Multiple sclerosis is an ...

Neuron types in brain are defined by gene activity shaping their communication patterns

September 21, 2017
In a major step forward in research, scientists at Cold Spring Harbor Laboratory (CSHL) today publish in Cell a discovery about the molecular-genetic basis of neuronal cell types. Neurons are the basic building blocks that ...

Your neurons register familiar faces, whether you notice them or not

September 21, 2017
When people see an image of a person they recognize—the famous tennis player Roger Federer or actress Halle Berry, for instance—particular cells light up in the brain. Now, researchers reporting in Current Biology on ...

Highly precise wiring in the cerebral cortex

September 21, 2017
Our brains house extremely complex neuronal circuits whose detailed structures are still largely unknown. This is especially true for the cerebral cortex of mammals, where, among other things, vision, thoughts or spatial ...

Faulty cell signaling derails cerebral cortex development, could it lead to autism?

September 20, 2017
As the embryonic brain develops, an incredibly complex cascade of cellular events occur, starting with progenitors - the originating cells that generate neurons and spur proper cortex development. If this cascade malfunctions ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.