Two heads are better than one: Gene expression reveals molecular mechanisms underlying evolution of cerebral cortex

November 9, 2012
Gene expression patterns in the brain of the newborn common marmoset revealed by in situ hybridization. Credit: 2012 Tomomi Shimogori, RIKEN Brain Science Institute

Dramatic expansion of the human cerebral cortex, over the course of evolution, accommodated new areas for specialized cognitive function, including language. Understanding the genetic mechanisms underlying these changes, however, remains a challenge to neuroscientists.

A team of researchers in Japan has now elucidated the mechanisms of cortical evolution. They used molecular techniques to compare the in mouse and monkey brains. 

Using the technique called in situ hybridization to visualize the distribution of mRNA transcripts, Okano, Shimogori and their colleagues examined the expression patterns of genes that are known to regulate development of the . They compared these patterns to those of the same genes in the brain of the common marmoset. They found that most of the genes had similar expression patterns in mice and marmosets, but that some had strikingly different patterns between the two species. Notably, some areas of the visual and prefrontal showed expression patterns that were unique to marmosets. 

The researchers observed that the Btbd3 gene, for example, which encodes a transcription factor that regulates the expression of other genes, was expressed throughout the visual cortex of the mouse but restricted to layer 4 of the , or the V1 area, of the marmoset. Similarly, the gene encoding connective tissue growth factor (CTGF) was expressed throughout the mouse cortex in layer 5, but was restricted to layer 4 of area V1 in the marmoset.

Some of the genes that are expressed widely throughout the mouse prefrontal cortex were likewise restricted to specific layers and sub-regions in the marmoset. Okano, Shimogori and colleagues also noted differences in expression patterns in the subplate region of the developing cortex, which contains the first neurons to receive inputs from the thalamus, a deep that relays sensory information to the cortex.

The researchers also found differences in gene expression within regions that connect the prefrontal cortex and hippocampus, a structure that is critical for learning and memory.

"The distinct gene expression patterns and anatomical differences between marmosets and mice provide enormous insights into the evolution of the brain," says Okano. "We are interested in characterizing the functions of genes that could act as driving forces of brain evolution and have started to investigate several candidate genes. Such approaches will eventually lead to a better understanding of brain function and mental disorders."

Explore further: Confirmation of repeated patterns of neurons indicates stereotypical organization throughout brain's cerebral cortex

More information: Mashiko, H., Yoshida, A.C., Kikuchi, S.S., Niimi, K., Takahashi, E., Aruga, J., Okano, H. & Shimogori, T. Comparative anatomy of marmoset and mouse cortex from genomic expression. Journal of Neuroscience 32, 5039–5053 (2012). www.jneurosci.org/content/32/15/5039.short

Related Stories

Confirmation of repeated patterns of neurons indicates stereotypical organization throughout brain's cerebral cortex

May 11, 2012
Neurons are arranged in periodic patterns that repeat over large distances in two areas of the cerebral cortex, suggesting that the entire cerebral cortex has a stereotyped organization, reports a team of researchers led ...

Fine-scale analysis of the human brain yields insight into its distinctive composition

April 12, 2012
Scientists at the Allen Institute for Brain Science have identified similarities and differences among regions of the human brain, among the brains of human individuals, and between humans and mice by analyzing the expression ...

Changes in the path of brain development make human brains unique

December 6, 2011
How the human brain and human cognitive abilities evolved in less than six million years has long puzzled scientists. A new study conducted by scientists in China and Germany, and published December 6 in the online, open-access ...

Study identifies gene expression abnormalities in autism

March 22, 2012
A study led by Eric Courchesne, PhD, director of the Autism Center of Excellence at the University of California, San Diego School of Medicine has, for the first time, identified in young autism patients genetic mechanisms ...

Recommended for you

The neural codes for body movements

July 21, 2017
A small patch of neurons in the brain can encode the movements of many body parts, according to researchers in the laboratory of Caltech's Richard Andersen, James G. Boswell Professor of Neuroscience, Tianqiao and Chrissy ...

Faulty support cells disrupt communication in brains of people with schizophrenia

July 20, 2017
New research has identified the culprit behind the wiring problems in the brains of people with schizophrenia. When researchers transplanted human brain cells generated from individuals diagnosed with childhood-onset schizophrenia ...

Scientists reveal how patterns of brain activity direct specific body movements

July 20, 2017
New research by Columbia scientists offers fresh insight into how the brain tells the body to move, from simple behaviors like walking, to trained movements that may take years to master. The discovery in mice advances knowledge ...

Scientists discover combined sensory map for heat, humidity in fly brain

July 20, 2017
Northwestern University neuroscientists now can visualize how fruit flies sense and process humidity and temperature together through a "sensory map" within their brains, according to new research.

Team traces masculinization in mice to estrogen receptor in inhibitory neurons

July 20, 2017
Researchers at Cold Spring Harbor Laboratory (CSHL) have opened a black box in the brain whose contents explain one of the remarkable yet mysterious facts of life.

Speech language therapy delivered through the Internet leads to similar improvements as in-person treatment

July 20, 2017
Telerehabilitation helps healthcare professionals reach more patients in need, but some worry it doesn't offer the same quality of care as in-person treatment. This isn't the case, according to recent research by Baycrest.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.