Fine-scale analysis of the human brain yields insight into its distinctive composition

April 12, 2012

Scientists at the Allen Institute for Brain Science have identified similarities and differences among regions of the human brain, among the brains of human individuals, and between humans and mice by analyzing the expression of approximately 1,000 genes in the brain. The study, published online today in the journal Cell, sheds light on the human brain in general and also serves as an introduction to what the associated publicly available dataset can offer the scientific community.

This study reveals a high degree of similarity among individuals. Only 5% of the nearly 1,000 genes surveyed in three particular regions show differences in expression between humans. In addition, comparison of this dataset to data in the Allen Mouse Atlas indicates great consistency between humans and mice, as the human visual cortex appears to share 79% of its with that of the mouse.

The dataset, which is publicly available online via the Allen Brain Atlas data portal as part of the Allen , holds promise for spurring further discoveries across the research community. Specifically, it contains detailed, cellular-level in situ hybridization for about 1,000 genes, selected for their involvement in disease or , in two distinct cortical areas of several disease-free adult human brains, both male and female.

Genes analyzed in this study fall into three categories: genes that serve as indicators of cell types found in the cortex, genes that are related to particular neural functions or diseases of the , and genes that hold value for understanding the neural evolution of different species.

Human brain

The analysis published today reveals high consistency of gene expression among different regions of the human cortex—the outer rind of the mammalian brain responsible for sophisticated information processing—specifically the temporal and visual cortices. The vast majority of genes expressed in these areas, 84%, demonstrate consistent expression patterns between cortical areas. This finding supports the hypothesis that there are common principles of organization and function that apply throughout the cortex, and therefore studying one area in great detail—the visual cortex, for example—may hold promise for uncovering fundamentals about how the whole brain works. The study also illustrates widespread conservation of gene expression among human individuals. The study reports that of the genes analyzed, only 46 (5%) showed variation in expression among individual, disease-free human brains in the examined.

Distinctions among species

Several findings in the study point to differences and similarities between humans and mice. As the mouse is the most common model for the study of human brain function and diseases, it is crucial to understand how well it represents the human system and where its accuracy may be limited. Overall, the results of this study indicate good conservation of gene expression between the two species. While the majority of gene expression is similar, the authors of the study report some striking differences.

The findings reveal distinct molecular markers specific to each species. Tracing those genes attributable to particular cell types—the building blocks of brain circuits—the study authors point to a unique molecular signature for each cortical cell type. These molecular signatures may reflect and contribute to species-specific functions.

According to the study, only 21% of gene expression in the visual cortex exhibited differences between human and mouse, but the nature of those differences may reveal more about what makes us uniquely human. While very little variation among genes in the disease and evolution categories was observed, substantial variation was reported among genes in the cell types category, with a marked number of those genes known to be involved in cell-to-cell communication. These data suggest that intercellular communication may be a key link to unique brain function in humans.

Advancing the field

To date, other studies examining human gene expression have employed either a segmented region of the brain or a select set of genes without specific anatomic information. This human brain dataset as well as the Allen Mouse Brain Atlas and the hundreds of studies published using its data demonstrate that adding high-resolution, cellular-level spatial information to gene expression profiling studies allows scientists to learn a great deal more about how contribute to cell types, neural circuits, and ultimately brain function.

The study published today offers a deep introduction to the kinds of information that can be mined from this and the types of hypotheses that it can be used to test. The entire body of data is incorporated into the Allen Atlas and is freely available via the Allen data portal at www.brain-map.org.

Explore further: Allen Institute for Brain Science announces first comprehensive gene map of the human brain

More information: Zeng et al., Large-Scale Cellular-Resolution Gene Profiling in Human Neocortex Reveals Species-Specific Molecular Signatures. Cell (2012) doi: 10.1016/j.cell.2012.02.052

Related Stories

Allen Institute for Brain Science announces first comprehensive gene map of the human brain

April 12, 2011
The Allen Institute for Brain Science has released the world's first anatomically and genomically comprehensive human brain map, a previously unthinkable feat made possible through leading-edge technology and more than four ...

Novel analysis sheds new light on the mechanisms of brain development

August 1, 2011
Scientists at the Allen Institute for Brain Science have taken an important step in identifying how the brain organizes itself during development. The findings, published in the Journal of Comparative Neurology today, describe ...

Allen Institute for Brain Science launches new atlas, adds new data and tools to others

November 14, 2011
The Allen Institute for Brain Science announced today the launch of a new brain atlas resource and updates to four existing resources, all publicly available online to accelerate brain research around the globe. The new atlas, ...

Researchers produce detailed map of gene activity in mouse brain

August 24, 2011
A new atlas of gene expression in the mouse brain provides insight into how genes work in the outer part of the brain called the cerebral cortex. In humans, the cerebral cortex is the largest part of the brain, and the region ...

Recommended for you

A piece of the puzzle: Eight autism-related mutations in one gene

September 19, 2017
Scientists have identified a hotspot for autism-related mutations in a single gene.

Scientists identify key regulator of male fertility

September 19, 2017
When it comes to male reproductive fertility, timing is everything. Now scientists are finding new details on how disruption of this timing may contribute to male infertility or congenital illness.

New assay leads to step toward gene therapy for deaf patients

September 18, 2017
Scientists at Oregon State University have taken an important step toward gene therapy for deaf patients by developing a way to better study a large protein essential for hearing and finding a truncated version of it.

Biologists identify gene involved in kidney-related birth defects

September 18, 2017
A team led by University of Iowa researchers has identified a gene linked to rare, often fatal kidney-related birth defects.

Genomic recycling: Ancestral genes take on new roles

September 18, 2017
One often hears about the multitude of genes we have in common with chimps, birds or other living creatures, but such comparisons are sometimes misleading. The shared percentage usually refers only to genes that encode instructions ...

A new approach to high insulin levels

September 18, 2017
Diabetes is characterised by a deficiency of insulin. Its opposite is a condition called congenital hyperinsulinism—patients produce the hormone too frequently and in excessive quantities, even if they haven't eaten any ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.