Research supports promise of cell therapy for bowel disease

February 28, 2013, Wake Forest University Baptist Medical Center

Researchers at Wake Forest Baptist Medical Center and colleagues have identified a special population of adult stem cells in bone marrow that have the natural ability to migrate to the intestine and produce intestinal cells, suggesting their potential to restore healthy tissue in patients with inflammatory bowel disease (IBD).

Up to 1 million Americans have IBD, which is characterized by frequent diarrhea and abdominal pain. IBD actually refers to two conditions – and Crohn's disease – in which the intestines become red and swollen and develop ulcers, probably as the result of the body having an immune response to its own tissue.

While there is currently no cure for IBD, there are aimed at reducing inflammation and preventing the immune response. Because these therapies aren't always effective, scientists hope to use stem cells to develop an injectable cell therapy to treat IBD.

The research findings are reported online in the (the journal of the Federation of American Societies for Experimental Biology) by senior researcher Graca Almeida-Porada, M.D., Ph.D., professor of regenerative medicine at Wake Forest Baptist's Institute for Regenerative Medicine, and colleagues.

The new research complements a 2012 report by Almeida-Porada's team that identified stem cells in cord blood that are involved in and also have the ability to migrate to the intestine.

"We've identified two populations of that migrate to the intestine – one involved in blood vessel formation and the other that can replenish and modulates inflammation," said Almeida-Porada. "Our hope is that a mixture of these cells could be used as an injectable therapy to treat IBD."

The cells would theoretically induce tissue recovery by contributing to a pool of cells within the intestine. The lining of the intestine has one of the highest cellular turnover rates in the body, with all cell types being renewed weekly from this pool of cells, located in an area of the intestine known as the crypt.

In the current study, the team used cell markers to identify a population of stem cells in human bone marrow with the highest potential to migrate to the intestine and thrive. The cells express high levels of a receptor (ephrin type B) that is involved in tissue repair and wound closure.

The cells also known to modulate inflammation were injected into fetal sheep at 55 to 62 days gestation. At 75 days post-gestation, the researchers found that most of the transplanted cells were positioned in the crypt area, replenishing the stem cells in the intestine.

"Previous studies in animals have shown that the transplantation of bone-marrow-derived cells can contribute to the regeneration of the gastrointestinal tract in IBD," said Almeida-Porada. "However, only small numbers of cells were successfully transplanted using this method. Our goal with the current study was to identify populations of cells that naturally migrate to the intestine and have the intrinsic ability to restore tissue health."

Almeida-Porada said that while the two studies show that the cells can migrate to and survive in a healthy intestine, the next step will be to determine whether they can survive in an inflamed .

Explore further: Research suggests promise of cell therapy for bowel disease

Related Stories

Research suggests promise of cell therapy for bowel disease

September 19, 2012
New research shows that a special population of stem cells found in cord blood has the innate ability to migrate to the intestine and contribute to the cell population there, suggesting the cells' potential to treat inflammatory ...

Scientists unmask mysterious cells as key 'border patrol agents' in the intestine

May 9, 2011
Researchers at UT Southwestern Medical Center have uncovered new clues about how the intestine maintains friendly relations with the 100 trillion symbiotic bacteria that normally live in the digestive tract.

Tales from the crypt: Study on gut cell regeneration reconciles long-standing research controversy

November 11, 2011
The cells that help to absorb food and liquid that humans consume are constantly being produced. The various cell types that do this come from stem cells that reside deep in the inner recesses of the accordion-like folds ...

Recommended for you

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

Secrets of longevity protein revealed in new study

January 17, 2018
Named after the Greek goddess who spun the thread of life, Klotho proteins play an important role in the regulation of longevity and metabolism. In a recent Yale-led study, researchers revealed the three-dimensional structure ...

The HLF gene protects blood stem cells by maintaining them in a resting state

January 17, 2018
The HLF gene is necessary for maintaining blood stem cells in a resting state, which is crucial for ensuring normal blood production. This has been shown by a new research study from Lund University in Sweden published in ...

Magnetically applied MicroRNAs could one day help relieve constipation

January 17, 2018
Constipation is an underestimated and debilitating medical issue related to the opioid epidemic. As a growing concern, researchers look to new tools to help patients with this side effect of opioid use and aging.

Researchers devise decoy molecule to block pain where it starts

January 16, 2018
For anyone who has accidentally injured themselves, Dr. Zachary Campbell not only sympathizes, he's developing new ways to blunt pain.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.