Cooling may prevent trauma-induced epilepsy

February 21, 2013 by Michael C. Purdy, Washington University School of Medicine in St. Louis
Cooling may prevent trauma-induced epilepsy
Researchers at Washington University School of Medicine in St. Louis are currently testing the ability of this cooling grid to reduce seizures that cannot be controlled through medication or surgery. In a separate study, they showed that brain cooling reduced seizures in a rat model of epilepsy. Credit: Matthew D. Smyth, MD

(Medical Xpress)—In the weeks, months and years after a severe head injury, patients often experience epileptic seizures that are difficult to control. A new study in rats suggests that gently cooling the brain after injury may prevent these seizures.

"Traumatic head injury is the leading cause of acquired epilepsy in , and in many cases the seizures can't be controlled with medication," says senior author Matthew Smyth, MD, associate professor of and of pediatrics at Washington University School of Medicine in St. Louis. "If we can confirm cooling's effectiveness in human trials, this approach may give us a safe and relatively simple way to prevent epilepsy in these patients."

The researchers reported their findings in Annals of Neurology.

Cooling the brain to protect it from injury is not a new concept. Cooling slows down the of , and scientists think this may make it easier for to survive the stresses of an injury. 

Doctors currently cool infants whose brains may have had inadequate access to blood or oxygen during birth. They also cool some to reduce peripheral when the heart stops beating.

Smyth has been exploring the possibility of using cooling to prevent seizures or reduce their severity.

"Warmer brain cells seem to be more electrically active, and that may increase the likelihood of abnormal electrical discharges that can coalesce to form a seizure," Smyth says. "Cooling should have the opposite effect."

Smyth and colleagues at the University of Washington and the University of Minnesota test potential therapies in a of . These rats develop chronic seizures weeks after the injury.

Researchers devised a headset that cools the rat brain. They were originally testing its ability to stop seizures when they noticed that cooling seemed to be not only stopping but also preventing seizures.

Scientists redesigned the study to focus on prevention. Under the new protocols, they put headsets on some of the rats that cooled their brains by less than 4 degrees Fahrenheit. Another group of rats wore headsets that did nothing. Scientists who were unaware of which rats they were observing monitored them for seizures during treatment and after the headsets were removed.

Rats that wore the inactive headset had progressively longer and more severe seizures weeks after the injury, but rats whose brains had been cooled only experienced a few very brief seizures as long as four months after injury.

Brain injury also tends to reduce cell activity at the site of the trauma, but the cooling headsets restored the normal activity levels of these cells.

The study is the first to reduce injury-related seizures without drugs, according to Smyth, who is director of the Pediatric Epilepsy Surgery program at St. Louis Children's Hospital.

"Our results show that the brain changes that cause this type of epilepsy happen in the days and weeks after injury, not at the moment of injury or when the symptoms of epilepsy begin," says Smyth. "If clinical trials confirm that cooling has similar effects in humans, it could change the way we treat patients with head injuries, and for the first time reduce the chance of developing epilepsy after brain injury."

Smyth and his colleagues have been testing cooling devices in humans in the operating room, and are planning a multi-institutional trial of an implanted focal brain cooling device to evaluate the efficacy of cooling on established seizures.

Explore further: Mild brain cooling after head injury prevents epileptic seizures in lab study

More information: D'Ambrosio. R. et al. Mild passive focal cooling prevents epileptic seizures after head injury in rats. Annals of Neurology, DOI: 10.1002/ana.23764

Related Stories

Mild brain cooling after head injury prevents epileptic seizures in lab study

December 21, 2012
(Medical Xpress)—Mild cooling of the brain after a head injury prevents the later development of epileptic seizures, according to an animal study reported this month in the  Annals of Neurology.

Non-epileptic seizures may be misdiagnosed longer in veterans

September 5, 2011
Psychogenic non-epileptic seizures may go undiagnosed for much longer in veterans compared to civilians, according to a new study published in the September 6, 2011, print issue of Neurology, the medical journal of the American ...

Surprising results from study of non-epileptic seizures

December 2, 2012
A Loyola University Medical Center neurologist is reporting surprising results of a study of patients who experience both epileptic and non-epileptic seizures.

Recommended for you

Research reveals atomic-level changes in ALS-linked protein

January 18, 2018
For the first time, researchers have described atom-by-atom changes in a family of proteins linked to amyotrophic lateral sclerosis (ALS), a group of brain disorders known as frontotemporal dementia and degenerative diseases ...

Fragile X finding shows normal neurons that interact poorly

January 18, 2018
Neurons in mice afflicted with the genetic defect that causes Fragile X syndrome (FXS) appear similar to those in healthy mice, but these neurons fail to interact normally, resulting in the long-known cognitive impairments, ...

How your brain remembers what you had for dinner last night

January 17, 2018
Confirming earlier computational models, researchers at University of California San Diego and UC San Diego School of Medicine, with colleagues in Arizona and Louisiana, report that episodic memories are encoded in the hippocampus ...

Recording a thought's fleeting trip through the brain

January 17, 2018
University of California, Berkeley neuroscientists have tracked the progress of a thought through the brain, showing clearly how the prefrontal cortex at the front of the brain coordinates activity to help us act in response ...

Midbrain 'start neurons' control whether we walk or run

January 17, 2018
Locomotion comprises the most fundamental movements we perform. It is a complex sequence from initiating the first step, to stopping when we reach our goal. At the same time, locomotion is executed at different speeds to ...

Miles Davis is not Mozart: The brains of jazz and classical pianists work differently

January 16, 2018
Keith Jarret, world-famous jazz pianist, once answered in an interview when asked if he would ever be interested in doing a concert where he would play both jazz and classical music: "No, that's hilarious. [...] It's like ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.