Translation error tracked in the brain of dementia patients

February 7, 2013
Green poly-GA core in a TDP43-inclusion with blue nucleus in the hippocampus of a C9orf72 mutation carrier. Credit: Kohji Mori and Dieter Edbauer

In certain dementias silent areas of the genetic code are translated into highly unusual proteins by mistake. An international team of scientists including researchers from the German Center for Neurodegenerative Diseases in Munich and the Ludwig-Maximilians-Universitat present this finding in the online edition of Science.

The proteins that have now been identified shouldn't actually exist. Nevertheless, they build the core of cellular aggregates whose identity has been enigmatic until now. These aggregates are typically associated with hereditary neurodegenerative diseases including variants of frontotemporal (FTD), also known as frontotemporal lobar degeneration (FTLD), and (ALS). They are likely to be damaging and might be a target for therapy.

FTD and ALS are part of a group of that show a broad and overlapping variety of symptoms: Patients often suffer from dementia, and may also be affected by language abnormalities and movement disorders. The problems often arise before the age of 65 without a clear cause. However, about 30 percent of cases are linked to a . In Europe approximately 10 percent of patients show a common genetic feature: In their DNA (the carrier of the ) a particular short sequence appears in numerous copies one after another. Furthermore, proteins of unknown identity accumulate inside the brain of these patients. As it turns out both findings are directly related – that is what the team of researchers including molecular biologists Dieter Edbauer and Christian Haass has now been able to show.

"We have found that the proteins are linked to a genetic peculiarity which many patients have in common. At a certain location inside the gene C9orf72 there are several hundred repeats of the sequence GGGGCC, while healthy people display less than 20 such copies," explains Prof. Edbauer, who researches at the DZNE and the LMU. "But it is surprising that these proteins are actually made, because these repeats fall into a region of the DNA that should not be translated into proteins."

An area of DNA assumed to be silent

The DNA holds the blueprints for building proteins. In general, the beginning of such a blueprint is indicated by a certain molecular start signal, but the usual signal is missing in this case. The region of DNA comprising the numerous repeats should therefore not be translated into proteins. It seems that the process of synthesis is initiated in a non-textbook way. "Although quite rare there are two known alternatives to the common mechanism. Which procedure applies here, we don't know yet," says Prof. Haass, Site Speaker of the DZNE in Munich and chair of Metabolic Biochemistry at LMU.

Nevertheless, in cell culture experiments the researchers were able to show that long repeats of the sequence GGGGCC may in fact lead to the production of proteins, even though the usual start signal is missing. Furthermore, they identified the same proteins in the particles that typically accumulate in the brain of patients. The scientist could also identify their composition: They turned out to be dipeptid-repeat proteins, which comprise a very large number of identical building blocks.

"These are very extraordinary proteins that usually don't show-up in the organism," Edbauer notes. "As far as we know, they are completely useless and scarcely soluble. Therefore, they tend to aggregate and seem to damage the nerve cells. We haven't formally proven toxicity, but there is ample evidence." Because of their peculiarity these proteins might be an interesting target for new therapies. "As the mechanism of their production is so unusual, we may find ways to inhibit their synthesis without interfering with the formation of other proteins. One could also try to block their aggregation and accelerate their decomposition."

The scientists have applied for a patent and are pursuing a major goal. "At the DZNE in Munich it is our dream to develop a therapy against these devastating diseases," Haass and Edbauer conclude.

Explore further: Human genetics study identifies the most common cause of ALS and dementia

More information: The C9orf72 GGGGCC Repeat is Translated into Aggregating Dipeptide-Repeat Proteins in FTLD/ALS, Kohji Mori et al., Science Express, doi: 10.1126/science.1232927

Related Stories

Human genetics study identifies the most common cause of ALS and dementia

September 21, 2011
A team led by scientists from Johns Hopkins and the National Institutes of Health has discovered a new genetic mutation for amyotrophic lateral sclerosis (ALS) and a related disease called frontotemporal dementia (FTD) that ...

New findings on protein misfolding

September 18, 2012
Misfolded proteins can cause various neurodegenerative diseases such as spinocerebellar ataxias (SCAs) or Huntington's disease, which are characterized by a progressive loss of neurons in the brain. Researchers of the Max ...

Researchers 'switch off' neurodegeneration in mice

May 8, 2012
Researchers at the Medical Research Council (MRC) Toxicology Unit at the University of Leicester have identified a major pathway leading to brain cell death in mice with neurodegenerative disease. The team was able to block ...

An unexpected player in a cancer defense system

November 28, 2011
Researchers of the Swedish medical university Karolinska Institutet and the University of Cologne, Germany, have identified a new protein involved in a defense mechanism against cancer. The VCP/p97 complex is best known for ...

Recommended for you

New map may lead to drug development for complex brain disorders, researcher says

July 24, 2017
Just as parents are not the root of all their children's problems, a single gene mutation can't be blamed for complex brain disorders like autism, according to a Keck School of Medicine of USC neuroscientist.

Brain stimulation may improve cognitive performance in people with schizophrenia

July 24, 2017
Brain stimulation could be used to treat cognitive deficits frequently associated with schizophrenia, according to a new study from King's College London.

Bird songs provide insight into how developing brain forms memories

July 24, 2017
Researchers at the University of Chicago have demonstrated, for the first time, that a key protein complex in the brain is linked to the ability of young animals to learn behavioral patterns from adults.

Scientists capture first image of major brain receptor in action

July 24, 2017
Columbia University Medical Center (CUMC) researchers have captured the first three-dimensional snapshots of the AMPA-subtype glutamate receptor in action. The receptor, which regulates most electrical signaling in the brain, ...

Working around spinal injuries: Rehabilitation, drug treatment lets rats recover some involuntary movement

July 24, 2017
A new study in rats shows that changes in the brain after spinal cord injury are necessary to restore at least some function to lower limbs. The work was published recently in the journal eLife.

Research identifies new brain death pathway in Alzheimer's disease

July 24, 2017
Alzheimer's disease tragically ravages the brains, memories and ultimately, personalities of its victims. Now affecting 5 million Americans, Alzheimer's disease is the sixth leading cause of death in the U.S., and a cure ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.