No genetic clock for neuron longevity

February 27, 2013 by Marcia Malory, Medical Xpress report
Image of pyramidal neurons in mouse cerebral cortex expressing green fluorescent protein. The red staining indicates GABAergic interneurons. (Source PLoS Biology). Image via Wikimedia Commons.

(Medical Xpress)—People are living longer than ever before, thanks to medical and technological advances. Unfortunately, aging can be associated with a decrease in brain function. This is because, unlike other cells in the body, neurons do not replicate. Neuroscientists in Italy have extended the lives of mouse neurons by injecting them into the brains of longer-lived rats, according to a study published in Proceedings of the National Academy of Sciences. This indicates that neuronal lifespan is not predetermined, but depends on conditions in the microenvironment.

After injecting into neuron in the embryos of mice with an of 18 months, Lorenzo Magrassi of the University of Pavia and his team transplanted the cells into the fetuses of Wistar rats, which live twice as long. Once the cells had differentiated, the researchers focused on a type of neuron called a Purkinje Cell (PC). Mice lose almost half of their PCs long before they reach old age. Wistar rats, on the other hand, keep almost all of their PCs until they die.

The researchers euthanized the rats after three years. When they examined the rats' brains, they found that the transplanted PCs had survived until the animals' deaths. The neurons showed the same signs of aging as neighboring rat neurons.

Although Magrassi and his colleagues were able to increase the lifespans of the transplanted neurons significantly, the transplantation did not alter all of the neurons' characteristics. The PCs retained the small size normally found in mice.

Magrassi says that the research proves that the longevity of neurons is not predetermined. Our do not have a that tells them when to die. Instead, the microenvironment of the brain plays an important role in deciding how long neurons will live. He claims that by injecting neurons into species that live even longer, scientists could increase neuronal lifespan still more.

The research indicates that an aging body need not imply an aging brain. According to Magrassi, the findings suggest that neuronal implants could help people suffering from degenerative diseases such as Alzheimer's disease and Parkinson's disease.

Now, the team is trying to find out why PCs survive so much longer in rats than in mice by comparing the proteomes of the transplanted neurons with those of the host neurons. In an email to The Scientist, Gilbert Bernier, a molecular biologist at the University of Montreal who was not involved in the study, suggested that mice could be losing their PCs because of other types of neurons or because of inflammation caused by immune cells.

Explore further: Neurons made from stem cells drive brain activity after transplantation in laboratory model

More information: Lifespan of neurons is uncoupled from organismal lifespan, PNAS, 2013. doi: 10.1073/pnas.1217505110

Neurons in mammals do not undergo replicative aging, and, in absence of pathologic conditions, their lifespan is limited only by the maximum lifespan of the organism. Whether neuronal lifespan is determined by the strain-specific lifetime or can be extended beyond this limit is unknown. Here, we transplanted embryonic mouse cerebellar precursors into the developing brain of the longer-living Wistar rats. The donor cells integrated into the rat cerebellum developing into mature neurons while retaining mouse-specific morphometric traits. In their new environment, the grafted mouse neurons did not die at or before the maximum lifespan of their strain of origin but survived as long as 36 mo, doubling the average lifespan of the donor mice. Thus, the lifespan of neurons is not limited by the maximum lifespan of the donor organism, but continues when transplanted in a longer-living host.

Related Stories

Neurons made from stem cells drive brain activity after transplantation in laboratory model

November 15, 2012
(Medical Xpress)—Researchers and patients look forward to the day when stem cells might be used to replace dying brain cells in Alzheimer's disease and other neurodegenerative conditions. Scientists are currently able to ...

Brain structure adapts to environmental change

June 13, 2011
Scientists have known for years that neurogenesis takes place throughout adulthood in the hippocampus of the mammalian brain. Now Columbia researchers have found that under stressful conditions, neural stem cells in the adult ...

New human neurons from adult cells right there in the brain

October 4, 2012
Researchers have discovered a way to generate new human neurons from another type of adult cell found in our brains. The discovery, reported in the October 5th issue of Cell Stem Cell, a Cell Press publication, is one step ...

Recommended for you

Epilepsy linked to brain volume and thickness differences

January 22, 2018
Epilepsy is associated with thickness and volume differences in the grey matter of several brain regions, according to new research led by UCL and the Keck School of Medicine of USC.

Research reveals atomic-level changes in ALS-linked protein

January 18, 2018
For the first time, researchers have described atom-by-atom changes in a family of proteins linked to amyotrophic lateral sclerosis (ALS), a group of brain disorders known as frontotemporal dementia and degenerative diseases ...

Fragile X finding shows normal neurons that interact poorly

January 18, 2018
Neurons in mice afflicted with the genetic defect that causes Fragile X syndrome (FXS) appear similar to those in healthy mice, but these neurons fail to interact normally, resulting in the long-known cognitive impairments, ...

How your brain remembers what you had for dinner last night

January 17, 2018
Confirming earlier computational models, researchers at University of California San Diego and UC San Diego School of Medicine, with colleagues in Arizona and Louisiana, report that episodic memories are encoded in the hippocampus ...

Recording a thought's fleeting trip through the brain

January 17, 2018
University of California, Berkeley neuroscientists have tracked the progress of a thought through the brain, showing clearly how the prefrontal cortex at the front of the brain coordinates activity to help us act in response ...

Midbrain 'start neurons' control whether we walk or run

January 17, 2018
Locomotion comprises the most fundamental movements we perform. It is a complex sequence from initiating the first step, to stopping when we reach our goal. At the same time, locomotion is executed at different speeds to ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.