Human memory study adds to global debate

February 5, 2013
A range of conditions can affect memory, such as Alzheimer's disease and ageing. Credit: 2010 The University of Adelaide

(Medical Xpress)—An international study involving researchers from the University of Adelaide has made a major contribution to the ongoing scientific debate about how processes in the human brain support memory and recognition.

The study used a rare technique in which data was obtained from within the brain itself, using electrodes placed inside the brains of .

Obtained in Germany, the data was sent to the University of Adelaide's School of Psychology for further analysis using new techniques developed there. The results are published today in the (PNAS).

"Being able to understand how works is important because there is a range of conditions that affect memory, such as Alzheimer's disease, head injury, and ageing," says Professor John Dunn, Head of the School of Psychology at the University of Adelaide and a co-author of the study, which was led by researchers at the universities of Cambridge, UK, and Bonn, Germany.

"Scientists know a lot about memory from years of study, but there is an ongoing debate about how certain mechanisms in the brain process memory, and how those mechanisms work together.

"What we're looking at is how the human brain processes '', which is our ability to recognise people, objects or events that we've encountered in the past."

The debate has centered on two key regions in the brain:

  • the hippocampus, which is very important to memory and is one of the first regions of the brain to suffer damage from Alzheimer's disease; and
  • the perirhinal cortex, which receives sensory information from all of the body's sensory regions.
"The debate is whether or not these two regions work in the same or different ways to support memory and recognition Studies over the years have led to both conclusions," Professor Dunn says.

He says this new study, which uses data from inside the brain instead of from electrodes on the scalp, far from the critical regions, revealed that different processes are at work in the and the .

"Our analysis shows that these regions are responding to and processing memory in two very different ways. The activity levels in those regions changed in different ways according to the amount of information that could be remembered," Professor Dunn says.

"This study won't settle the debate once and for all, but it does add weight to those scientists who believe that these two distinct parts of the brain respond to in different ways," he says.

Explore further: Have we met before? Scientists show why the brain has the answer

Related Stories

Have we met before? Scientists show why the brain has the answer

August 4, 2011
The research, led by Dr Clea Warburton and Dr Gareth Barker in the University's School of Physiology and Pharmacology and published in the Journal of Neuroscience, has investigated why we can recognise faces much better if ...

When you can recite a poem but not remember who asked you to learn it a few days earlier

August 11, 2011
Memory is not a single process but is made up of several sub-processes relying on different areas of the brain. Episodic memory, the ability to remember specific events such as what you did yesterday, is known to be vulnerable ...

Brain size may predict risk for early Alzheimer's disease

December 21, 2011
New research suggests that, in people who don't currently have memory problems, those with smaller regions of the brain's cortex may be more likely to develop symptoms consistent with very early Alzheimer's disease. The study ...

Recommended for you

Cognitive cross-training enhances learning, study finds

July 25, 2017
Just as athletes cross-train to improve physical skills, those wanting to enhance cognitive skills can benefit from multiple ways of exercising the brain, according to a comprehensive new study from University of Illinois ...

Brain disease seen in most football players in large report

July 25, 2017
Research on 202 former football players found evidence of a brain disease linked to repeated head blows in nearly all of them, from athletes in the National Football League, college and even high school.

Zebrafish study reveals clues to healing spinal cord injuries

July 25, 2017
Fresh insights into how zebrafish repair their nerve connections could hold clues to new therapies for people with spinal cord injuries.

Lutein may counter cognitive aging, study finds

July 25, 2017
Spinach and kale are favorites of those looking to stay physically fit, but they also could keep consumers cognitively fit, according to a new study from University of Illinois researchers.

Brain stimulation may improve cognitive performance in people with schizophrenia

July 24, 2017
Brain stimulation could be used to treat cognitive deficits frequently associated with schizophrenia, according to a new study from King's College London.

New map may lead to drug development for complex brain disorders, researcher says

July 24, 2017
Just as parents are not the root of all their children's problems, a single gene mutation can't be blamed for complex brain disorders like autism, according to a Keck School of Medicine of USC neuroscientist.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.