Human memory study adds to global debate

February 5, 2013, University of Adelaide
A range of conditions can affect memory, such as Alzheimer's disease and ageing. Credit: 2010 The University of Adelaide

(Medical Xpress)—An international study involving researchers from the University of Adelaide has made a major contribution to the ongoing scientific debate about how processes in the human brain support memory and recognition.

The study used a rare technique in which data was obtained from within the brain itself, using electrodes placed inside the brains of .

Obtained in Germany, the data was sent to the University of Adelaide's School of Psychology for further analysis using new techniques developed there. The results are published today in the (PNAS).

"Being able to understand how works is important because there is a range of conditions that affect memory, such as Alzheimer's disease, head injury, and ageing," says Professor John Dunn, Head of the School of Psychology at the University of Adelaide and a co-author of the study, which was led by researchers at the universities of Cambridge, UK, and Bonn, Germany.

"Scientists know a lot about memory from years of study, but there is an ongoing debate about how certain mechanisms in the brain process memory, and how those mechanisms work together.

"What we're looking at is how the human brain processes '', which is our ability to recognise people, objects or events that we've encountered in the past."

The debate has centered on two key regions in the brain:

  • the hippocampus, which is very important to memory and is one of the first regions of the brain to suffer damage from Alzheimer's disease; and
  • the perirhinal cortex, which receives sensory information from all of the body's sensory regions.
"The debate is whether or not these two regions work in the same or different ways to support memory and recognition Studies over the years have led to both conclusions," Professor Dunn says.

He says this new study, which uses data from inside the brain instead of from electrodes on the scalp, far from the critical regions, revealed that different processes are at work in the and the .

"Our analysis shows that these regions are responding to and processing memory in two very different ways. The activity levels in those regions changed in different ways according to the amount of information that could be remembered," Professor Dunn says.

"This study won't settle the debate once and for all, but it does add weight to those scientists who believe that these two distinct parts of the brain respond to in different ways," he says.

Explore further: Have we met before? Scientists show why the brain has the answer

Related Stories

Have we met before? Scientists show why the brain has the answer

August 4, 2011
The research, led by Dr Clea Warburton and Dr Gareth Barker in the University's School of Physiology and Pharmacology and published in the Journal of Neuroscience, has investigated why we can recognise faces much better if ...

When you can recite a poem but not remember who asked you to learn it a few days earlier

August 11, 2011
Memory is not a single process but is made up of several sub-processes relying on different areas of the brain. Episodic memory, the ability to remember specific events such as what you did yesterday, is known to be vulnerable ...

Brain size may predict risk for early Alzheimer's disease

December 21, 2011
New research suggests that, in people who don't currently have memory problems, those with smaller regions of the brain's cortex may be more likely to develop symptoms consistent with very early Alzheimer's disease. The study ...

Recommended for you

Your brain responses to music reveal if you're a musician or not

January 23, 2018
How your brain responds to music listening can reveal whether you have received musical training, according to new Nordic research conducted in Finland (University of Jyväskylä and AMI Center) and Denmark (Aarhus University).

New neuron-like cells allow investigation into synthesis of vital cellular components

January 22, 2018
Neuron-like cells created from a readily available cell line have allowed researchers to investigate how the human brain makes a metabolic building block essential for the survival of all living organisms. A team led by researchers ...

Finding unravels nature of cognitive inflexibility in fragile X syndrome

January 22, 2018
Mice with the genetic defect that causes fragile X syndrome (FXS) learn and remember normally, but show an inability to learn new information that contradicts what they initially learned, shows a new study by a team of neuroscientists. ...

Epilepsy linked to brain volume and thickness differences

January 22, 2018
Epilepsy is associated with thickness and volume differences in the grey matter of several brain regions, according to new research led by UCL and the Keck School of Medicine of USC.

Research reveals atomic-level changes in ALS-linked protein

January 18, 2018
For the first time, researchers have described atom-by-atom changes in a family of proteins linked to amyotrophic lateral sclerosis (ALS), a group of brain disorders known as frontotemporal dementia and degenerative diseases ...

Fragile X finding shows normal neurons that interact poorly

January 18, 2018
Neurons in mice afflicted with the genetic defect that causes Fragile X syndrome (FXS) appear similar to those in healthy mice, but these neurons fail to interact normally, resulting in the long-known cognitive impairments, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.