Language protein differs in males, females

February 19, 2013

Male rat pups have more of a specific brain protein associated with language development than females, according to a study published February 20 in The Journal of Neuroscience. The study also found sex differences in the brain protein in a small group of children. The findings may shed light on sex differences in communication in animals and language acquisition in people.

Sex differences in early language acquisition and development in children are well documented—on average, girls tend to speak earlier and with greater complexity than boys of the same age. However, scientists continue to debate the origin and significance of such differences. Previous studies showed the Foxp2 plays an important role in speech and language development in humans and in birds and other mammals.

In the current study, J. Michael Bowers, PhD, Margaret McCarthy, PhD, and colleagues at the University of Maryland School of Medicine examined whether sex differences in the expression of the Foxp2 protein in the developing brain might underlie communication differences between the sexes.

The researchers analyzed the levels of Foxp2 protein in the brains of four-day-old female and male rats and compared the ultrasonic distress calls made by the animals when separated from their mothers and siblings. Compared with females, males had more of the protein in associated with cognition, emotion, and . They also made more noise than females—producing nearly double the total vocalizations over the five-minute separation period—and were preferentially retrieved and returned to the nest first by the mother.

When the researchers reduced levels of the Foxp2 protein in the male pups and increased it in female pups, they reversed the sex difference in the distress calls, causing males to sound like females and the females like males. This change led the mother to reverse her behavior as well, preferentially retrieving the over the males.

"This study is one of the first to report a sex difference in the expression of a language-associated protein in humans or animals," McCarthy said. "The findings raise the possibility that sex differences in brain and behavior are more pervasive and established earlier than previously appreciated."

The researchers extended their findings to humans in a preliminary study of Foxp2 protein in a small group of children. Unlike the rats, in which Foxp2 protein was elevated in males, they found that in humans, the girls had more of the Foxp2 protein in the cortex—a brain region associated with language—than age-matched boys.

"At first glance, one might conclude that the findings in rats don't generalize to humans, but the higher levels of Foxp2 expression are found in the more communicative sex in each species," noted Cheryl Sisk, who studies at Michigan State University and was not involved with the study.

Explore further: A gene implicated in speech regulates connectivity of the developing brain

Related Stories

Recommended for you

Whether our speech is fast or slow, we say about the same

January 17, 2017

The purpose of speech is communication, not speed—so perhaps some new research findings, while counterintuitive, should come as no surprise. Whether we speak quickly or slowly, the new study suggests, we end up conveying ...

Scientists find sensor that makes synapses fast

January 17, 2017

Synapses, the connections between neurons, come in different flavors, depending on the chemical they use as transmitter. Signal transmitters, or neurotransmitters, are released at the synapse after calcium ions flow into ...

Mounting challenge to brain sex differences

January 17, 2017

How different are men and women's brains? The latest evidence to address this controversy comes from a study at Rosalind Franklin University of Medicine and Science, where a meta-analysis of human amygdala volumes found no ...

Multiregional brain on a chip

January 13, 2017

Harvard University researchers have developed a multiregional brain-on-a-chip that models the connectivity between three distinct regions of the brain. The in vitro model was used to extensively characterize the differences ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.