Language protein differs in males, females

February 19, 2013

Male rat pups have more of a specific brain protein associated with language development than females, according to a study published February 20 in The Journal of Neuroscience. The study also found sex differences in the brain protein in a small group of children. The findings may shed light on sex differences in communication in animals and language acquisition in people.

Sex differences in early language acquisition and development in children are well documented—on average, girls tend to speak earlier and with greater complexity than boys of the same age. However, scientists continue to debate the origin and significance of such differences. Previous studies showed the Foxp2 plays an important role in speech and language development in humans and in birds and other mammals.

In the current study, J. Michael Bowers, PhD, Margaret McCarthy, PhD, and colleagues at the University of Maryland School of Medicine examined whether sex differences in the expression of the Foxp2 protein in the developing brain might underlie communication differences between the sexes.

The researchers analyzed the levels of Foxp2 protein in the brains of four-day-old female and male rats and compared the ultrasonic distress calls made by the animals when separated from their mothers and siblings. Compared with females, males had more of the protein in associated with cognition, emotion, and . They also made more noise than females—producing nearly double the total vocalizations over the five-minute separation period—and were preferentially retrieved and returned to the nest first by the mother.

When the researchers reduced levels of the Foxp2 protein in the male pups and increased it in female pups, they reversed the sex difference in the distress calls, causing males to sound like females and the females like males. This change led the mother to reverse her behavior as well, preferentially retrieving the over the males.

"This study is one of the first to report a sex difference in the expression of a language-associated protein in humans or animals," McCarthy said. "The findings raise the possibility that sex differences in brain and behavior are more pervasive and established earlier than previously appreciated."

The researchers extended their findings to humans in a preliminary study of Foxp2 protein in a small group of children. Unlike the rats, in which Foxp2 protein was elevated in males, they found that in humans, the girls had more of the Foxp2 protein in the cortex—a brain region associated with language—than age-matched boys.

"At first glance, one might conclude that the findings in rats don't generalize to humans, but the higher levels of Foxp2 expression are found in the more communicative sex in each species," noted Cheryl Sisk, who studies at Michigan State University and was not involved with the study.

Explore further: A gene implicated in speech regulates connectivity of the developing brain

Related Stories

A gene implicated in speech regulates connectivity of the developing brain

July 7, 2011
Foxp2, a gene involved in speech and language, helps regulate the wiring of neurons in the brain, according to a study which will be published on July 7th in the open-access journal PLoS Genetics. The researchers identified ...

Recommended for you

'Selfish brain' wins out when competing with muscle power, study finds

October 20, 2017
Human brains are expensive - metabolically speaking. It takes lot of energy to run our sophisticated grey matter, and that comes at an evolutionary cost.

Researchers find shifting relationship between flexibility, modularity in the brain

October 19, 2017
A new study by Rice University researchers takes a step toward what they see as key to the advance of neuroscience: a better understanding of the relationship between the brain's flexibility and its modularity.

Brain training can improve our understanding of speech in noisy places

October 19, 2017
For many people with hearing challenges, trying to follow a conversation in a crowded restaurant or other noisy venue is a major struggle, even with hearing aids. Now researchers reporting in Current Biology on October 19th ...

Investigating the most common genetic contributor to Parkinson's disease

October 19, 2017
LRRK2 gene mutations are the most common genetic cause of Parkinson's disease (PD), but the normal physiological role of this gene in the brain remains unclear. In a paper published in Neuron, Brigham and Women's Hospital ...

Want to control your dreams? Here's how

October 19, 2017
New research at the University of Adelaide has found that a specific combination of techniques will increase people's chances of having lucid dreams, in which the dreamer is aware they're dreaming while it's still happening ...

Brain takes seconds to switch modes during tasks

October 19, 2017
The brain rapidly switches between operational modes in response to tasks and what is replayed can predict how well a task will be completed, according to a new UCL study in rats.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.