New study aims to use stem cells to help save sight of diabetes sufferers

February 14, 2013

Scientists at Queen's University Belfast are hoping to develop a novel approach that could save the sight of millions of diabetes sufferers using adult stem cells.

Currently millions of diabetics worldwide are at risk of sight loss due to a condition called Diabetic Retinopathy. This is when causes the blood vessels in the eye to become blocked or to leak. Failed blood flow harms the and leads to and if left untreated can lead to blindness.

The novel REDDSTAR study (Repair of Diabetic Damage by Stromal Cell Administration) involving researchers from Queen's Centre for Vision and Vascular Science in the School of Medicine, Dentistry and Biomedical Sciences, will see them isolating stem cells from donors, expanding them in a laboratory setting and re-delivering them to a patient where they help to repair the blood vessels in the eye. This is especially relevant to patients with diabetes were the vessels of the retina become damaged.

At present there are very few treatments available to control the progression of . There are no treatments which will improve and simultaneously treat the diabetic complication.

The €6 million EU funded research is being carried out with NUI Galway and brings together experts from Northern Ireland, Ireland, Germany, the Netherlands, Denmark, Portugal and the US.

Professor Alan Stitt, Director of the Centre for Vision and Vascular Science in Queen's and lead scientist for the project said: "The Queen's component of the REDDSTAR study involves investigating the potential of a unique stem to promote repair of damaged blood vessels in the retina during diabetes. The impact could be profound for patients, because regeneration of damaged retina could prevent progression of diabetic retinopathy and reduce the risk of .

"Currently available treatments for diabetic retinopathy are not always satisfactory. They focus on end-stages of the disease, carry many side effects and fail to address the root causes of the condition. A novel, alternative therapeutic approach is to harness adult stem cells to promote regeneration of the damaged retinal blood vessels and thereby prevent and/or reverse retinopathy."

"This new research project is one of several regenerative medicine approaches ongoing in the centre. The approach is quite simple: we plan to isolate a very defined population of stem cells and then deliver them to sites in the body that have been damaged by diabetes. In the case of some patients with diabetes, they may gain enormous benefit from stem cell-mediated repair of damaged blood vessels in their retina. This is the first step towards an exciting new therapy in an area where it is desperately needed."

The research focuses on specific derived from bone-marrow. Which are being provided by Orbsen Therapeutics, a spin-out from the Science Foundation Ireland-funded Regenerative Medicine Institute (REMEDI) at NUI Galway.

The project will develop ways to grow the bone-marrow-derived . They will be tested in several preclinical models of diabetic complications at centres in Belfast, Galway, Munich, Berlin and Porto before human trials take place in Denmark.

Explore further: Queen's scientists teaming up to cure premature baby blindness

Related Stories

Queen's scientists teaming up to cure premature baby blindness

May 17, 2011
Scientists from the School of Medicine, Dentistry and Biomedical Sciences at Queen's University Belfast are teaming up to develop a cure to an illness that can lead to blindness in premature babies, thanks to funding from ...

Diabetes leading to blindness in many people

November 30, 2012
Diabetes is the leading cause of new cases of blindness among adults 20 to 74 years old. Dr. Michael Grodin, co-director of retinal services and director of clinical research at Katzen Eye Group, with locations around Baltimore, ...

Diabetes distresses bone marrow stem cells by damaging their microenvironment

January 31, 2013
New research has shown the presence of a disease affecting small blood vessels, known as microangiopathy, in the bone marrow of diabetic patients. While it is well known that microangiopathy is the cause of renal damage, ...

Recommended for you

Post-stroke patients reach terra firma with new exosuit technology

July 26, 2017
Upright walking on two legs is a defining trait in humans, enabling them to move very efficiently throughout their environment. This can all change in the blink of an eye when a stroke occurs. In about 80% of patients post-stroke, ...

Molecular hitchhiker on human protein signals tumors to self-destruct

July 24, 2017
Powerful molecules can hitch rides on a plentiful human protein and signal tumors to self-destruct, a team of Vanderbilt University engineers found.

Researchers develop new method to generate human antibodies

July 24, 2017
An international team of scientists has developed a method to rapidly produce specific human antibodies in the laboratory. The technique, which will be described in a paper to be published July 24 in The Journal of Experimental ...

New vaccine production could improve flu shot accuracy

July 24, 2017
A new way of producing the seasonal flu vaccine could speed up the process and provide better protection against infection.

A sodium surprise: Engineers find unexpected result during cardiac research

July 20, 2017
Irregular heartbeat—or arrhythmia—can have sudden and often fatal consequences. A biomedical engineering team at Washington University in St. Louis examining molecular behavior in cardiac tissue recently made a surprising ...

Want to win at sports? Take a cue from these mighty mice

July 20, 2017
As student athletes hit training fields this summer to gain the competitive edge, a new study shows how the experiences of a tiny mouse can put them on the path to winning.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.