Subcortical damage is 'primary cause' of neurological deficits after 'awake craniotomy'

February 7, 2013, Wolters Kluwer Health

Injury to the subcortical structures of the inner brain is a major contributor to worsening neurological abnormalities after "awake craniotomy" for brain tumors, reports a study in the February issue of Neurosurgery, official journal of the Congress of Neurological Surgeons.

During a procedure intended to protect critical functional areas in the outer brain (cortex), damage to subcortical areas—which may be detectable on MRI scans—is a major risk factor for persistent neurological deficits. "Our ability to identify and preserve cortical areas of function can still result in significant neurological decline postoperatively as a result of subcortical injury," write Dr. Victoria T. Trinh and colleagues of The University of Texas MD Anderson Cancer Center, Houston.

Risk Factors for Neurological Deficits after Awake Craniotomy

The researchers analyzed factors associated with worsening neurological function after awake craniotomy for brain tumor surgery. In awake craniotomy, the patient is sedated but conscious so as to be able to communicate with the surgeon during the operation.

The patient is asked to perform visual and verbal tasks while specific areas of the cortex are stimulated, generating a functional map of the brain surface. This helps the surgeon navigate safely to the tumor without damaging the "eloquent cortex"—critical areas of the brain involved in language or movement.

The study included 241 patients who underwent awake craniotomy with functional brain mapping from 2005 through 2010. Of these, 40 patients developed new neurological abnormalities. Dr. Trinh and colleagues examined potential predictive factors—including changes on a type of MRI scan called diffusion-weighted imaging (DWI).

Of the 40 cases with new neurological deficits, 36 developed while the surgeon was operating in the subcortical areas of the brain. These are the inner structures of the brain, located beneath the outer, folded . Just one abnormality developed while the surgeon was operating in the cortex only.

MRI Changes May Reflect Subcortical Damage

Neurological abnormalities developing while the surgeon was operating in the subcortex were likely to remain after surgery, and to persist at three months' follow-up evaluation. Dr. Trinh and coauthors write, "Patients with intraoperative deficits during subcortical dissection were over six times more likely to have persistently worsened neurological function at three-month follow-up."

In these patients, MRI scans showing more severe changes in the DWI pattern in the subcortex also predicted lasting neurological abnormalities. Of patients who had neurological deficits immediately after surgery and significant DWI changes, 69 percent had persistent deficits three months after surgery.

Patients who had "positive" cortical mapping—that is, in whom eloquent cortex was located during functional mapping—were somewhat more likely to have neurological abnormalities immediately after surgery. However, the risk of lasting abnormalities was not significantly higher compared to patients with negative cortical mapping.

Awake craniotomy with stimulation produces a "real-time functional map" of the that is invaluable to the neurosurgeon in deciding how best to approach the tumor. The new results suggest that, even when the eloquent cortex is not located on cortical mapping, subcortical areas near the tumor can still be injured during surgery. "Subcortical injury is the primary cause of neurological deficits following awake craniotomy procedures," Dr. Trinh and colleagues write.

The researchers add, "Preserving subcortical areas during tumor resections may reduce the severity of both immediate and late neurological sequelae." Based on their findings, they believe subcortical mapping techniques may play an important role in avoiding complications after awake .

Explore further: New approach simplifies Parkinson's surgery

Related Stories

New approach simplifies Parkinson's surgery

May 25, 2011
(Medical Xpress) -- University of Wisconsin Hospital and Clinics has become the second academic medical center in the country where neurosurgeons can perform deep-brain stimulation (DBS) in an intra-operative MRI (iMRI) suite.

No need for routine repeated CT scans after mild head trauma, reports neurosurgery

January 3, 2013
When initial computed tomography (CT) scans show bleeding within the brain after mild head injury, decisions about repeated CT scans should be based on the patient's neurological condition, according to a report in the January ...

Neurological and executive function impairment associated with breast cancer

November 14, 2011
Women who survive breast cancer show significant neurological impairment, and outcomes appear to be significantly poorer for those treated with chemotherapy, according to a report in the November issue of the Archives of ...

Recommended for you

Brainwaves show how exercising to music bends your mind

February 18, 2018
Headphones are a standard sight in gyms and we've long known research shows listening to tunes can be a game-changer for your run or workout.

To sleep, perchance to forget

February 17, 2018
The debate in sleep science has gone on for a generation. People and other animals sicken and die if they are deprived of sleep, but why is sleep so essential?

Lab-grown human cerebellar cells yield clues to autism

February 16, 2018
Increasing evidence has linked autism spectrum disorder (ASD) with dysfunction of the brain's cerebellum, but the details have been unclear. In a new study, researchers at Boston Children's Hospital used stem cell technology ...

Fragile X syndrome neurons can be restored, study shows

February 16, 2018
Fragile X syndrome is the most frequent cause of intellectual disability in males, affecting one out of every 3,600 boys born. The syndrome can also cause autistic traits, such as social and communication deficits, as well ...

Brain-machine interface study suggests how brains prepare for action

February 16, 2018
Somewhere right now in Pyeongchang, South Korea, an Olympic skier is thinking through the twists and spins she'll make in the aerial competition, a speed skater is visualizing how he'll sneak past a competitor on the inside ...

Humans blink strategically in response to environmental demands

February 16, 2018
If a brief event in our surroundings is about to happen, it is probably better not to blink during that moment. A team of researchers at the Centre for Cognitive Science from Technische Universität Darmstadt published a ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.