Zeroing in on heart disease: Innovative strategy pinpoints genes underlying cardiovascular disease risk

February 28, 2013, European Molecular Biology Laboratory

Studies screening the genome of hundreds of thousands of individuals (known as Genome-wide association studies or GWAS) have linked more than 100 regions in the genome to the risk of developing cardiovascular disease. Researchers from the European Molecular Biology Laboratory (EMBL) and the University of Heidelberg, through the joint Molecular Medicine Partnership Unit (MMPU), are taking these results one step further by pinpointing the exact genes that could have a role in the onset of the disease. Their findings are published today in the PLoS Genetics.

The scientists used a technology called "RNA interference" that can selectively decrease the level of expression of targeted genes. By observing what changes, if any, this decrease causes in cells, researchers can identify the function of the genes and, on a larger scale, objectively test the function of many genes in parallel.

in the blood are one of the main risk factors for cardiovascular disease. They are controlled by the amount of cholesterol that cells can take in - thus removing it from the blood - and metabolise. The researchers used RNA interference to test the function of each of the genes within 56 regions previously identified by GWAS as being linked with cardiovascular disease. They selectively decreased their action and measured what, if any, changes this induced in cholesterol metabolism. From this they could deduce which of the genes are most likely to be involved in the onset of the disease.

"This is the first wide–scale study that follows up on GWAS. It has proven its potential by narrowing down a large list of to the few with an important function that we can now focus on in future in-depth studies," explains Rainer Pepperkok at EMBL, who co-led the study with Heiko Runz at the University of Heidelberg.

"In principle, our approach can be applied to any disease that has an observable effect on cells", adds Heiko Runz. "The genes identified here may further our understanding of the mechanisms leading to cardiovascular disease and allow us to improve its prediction and diagnosis".

Explore further: Mapping genes: Study finds new risk factors for neurodegenerative diseases

Related Stories

Mapping genes: Study finds new risk factors for neurodegenerative diseases

June 7, 2012
Using a new and powerful approach to understand the origins of neurodegenerative disorders such as Alzheimer's disease, researchers at Mayo Clinic in Florida are building the case that these diseases are primarily caused ...

Finding the silent killer -- a biomarker test for atherosclerosis

January 13, 2012
Furring of the arteries, atherosclerosis, is a leading cause of death across the world. Atherosclerosis leads to peripheral arterial disease, coronary heart disease, stroke and heart attacks. However, atherosclerosis is a ...

Recommended for you

Peers' genes may help friends stay in school, new study finds

January 18, 2018
While there's scientific evidence to suggest that your genes have something to do with how far you'll go in school, new research by a team from Stanford and elsewhere says the DNA of your classmates also plays a role.

Two new breast cancer genes emerge from Lynch syndrome gene study

January 18, 2018
Researchers at Columbia University Irving Medical Center and NewYork-Presbyterian have identified two new breast cancer genes. Having one of the genes—MSH6 and PMS2—approximately doubles a woman's risk of developing breast ...

Can mice really mirror humans when it comes to cancer?

January 18, 2018
A new Michigan State University study is helping to answer a pressing question among scientists of just how close mice are to people when it comes to researching cancer.

A centuries-old math equation used to solve a modern-day genetics challenge

January 18, 2018
Researchers developed a new mathematical tool to validate and improve methods used by medical professionals to interpret results from clinical genetic tests. The work was published this month in Genetics in Medicine.

Epigenetics study helps focus search for autism risk factors

January 16, 2018
Scientists have long tried to pin down the causes of autism spectrum disorder. Recent studies have expanded the search for genetic links from identifying genes toward epigenetics, the study of factors that control gene expression ...

Group recreates DNA of man who died in 1827 despite having no body to work with

January 16, 2018
An international team of researchers led by a group with deCODE Genetics, a biopharmaceutical company in Iceland, has partly recreated the DNA of a man who died in 1827, despite having no body to take tissue samples from. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.