Mapping genes: Study finds new risk factors for neurodegenerative diseases

June 7, 2012

Using a new and powerful approach to understand the origins of neurodegenerative disorders such as Alzheimer's disease, researchers at Mayo Clinic in Florida are building the case that these diseases are primarily caused by genes that are too active or not active enough, rather than by harmful gene mutations.

In the June 7 online issue of , they report that several hundred genes within almost 800 brain samples of patients with Alzheimer's disease or other disorders had altered that did not result from neurodegeneration. Many of those variants were likely the cause.

"We now understand that disease likely develops from gene variants that have modest effects on gene expression, and which are also found in healthy people. But some of the variants — elevating expression of some genes, reducing levels of others — combine to produce a perfect storm that leads to dysfunction," says lead investigator Nilufer Ertekin-Taner, M.D., Ph.D., a Mayo Clinic neurologist and neuroscientist.

"If we can identify the genes linked to a disease that are too active or too dormant, we might be able to define new drug targets and therapies," she says. "That could be the case for both neurodegenerative disease as well as disease in general."

Dr. Ertekin-Taner says no other lab has performed the extent of brain gene expression study conducted at Mayo Clinic's Florida campus. "The novelty, and the usefulness, of our study is the sheer number of brain samples that we looked at and the way in which we analyzed them. These results demonstrate the significant contribution of genetic factors that alter brain gene expression and increase risk of disease," she says.

This form of data analysis measures gene expression levels by quantifying the amount of RNA produced in tissue and scans the genome of patients to identify genetic variants that associate with these levels.

Mayo researchers measured the level of 24,526 transcripts (messenger RNA) for 18,401 genes using cerebellar autopsy tissue from 197 Alzheimer's disease patients and from 177 patients with other forms of neurodegeneration. The researchers then validated the results by examining the temporal cortex from 202 Alzheimer's disease patients and from 197 with other pathologies. The difference between these samples is that while the temporal cortex is affected by Alzheimer's disease, the cerebellum is relatively spared.

From these analyses, the researchers identified more than 2,000 markers of altered expression in both groups of patients that were common between the cerebellum and . Some of these markers also influenced risk of human diseases, suggesting their contribution to development of neurodegenerative and other diseases regardless of their location in the brain.

They identified novel expression "hits" for genetic risk markers of diseases that included progressive supranuclear palsy, Parkinson's disease, and Paget's disease, and confirmed other known associations for lupus, ulcerative colitis, and type 1 diabetes.

"Altered expression of brain genes can be linked to a number of diseases that affect the entire body," Dr. Ertekin-Taner says.

They then compared their eGWAS to GWAS data on Alzheimer's disease, conducted by the federally funded Alzheimer's Disease Genetics Consortium, to test whether some of the risk genes already identified promote disease through altered expression.

"We found that a number of genes already linked to Alzheimer's disease do, in fact, have altered , but we also discovered that many of the variants in what we call the gray zone of the GWAS — genes whose contribution to Alzheimer's disease was uncertain — were also influencing expression levels," Dr. Ertekin-Taner says. "That offers us new candidate risk genes to explore.

"This is a powerful approach to understanding disease," she says. "It can find new genes that contribute to risk, as well as new genetic pathways, and can also help us understand the function for a large number of and other molecular regulators in the genome that are implicated in very important diseases."

Explore further: Study reveals new link between Alzheimer's disease and healthy aging

Related Stories

Study reveals new link between Alzheimer's disease and healthy aging

August 15, 2011
Alzheimer's disease and frontotemporal lobar degeneration (FTLD) are two of the most prevalent forms of neurodegenerative disorders. In a study published online today in Genome Research, researchers have analyzed changes ...

Three possible susceptibility genes found in neurodegenerative disorder

June 19, 2011
An international research team, co-led by scientists at Mayo Clinic's campus in Florida, have discovered three potential susceptibility genes for development of progressive supranuclear palsy (PSP), a rare neurodegenerative ...

Genetic mutation linked to Parkinson's disease

July 15, 2011
Researchers have discovered a new gene mutation they say causes Parkinson's disease. The mutation was identified in a large Swiss family with Parkinson's disease, using advanced DNA sequencing technology.

Weight loss after gastric bypass surgery reduces expression of Alzheimer's genes

June 6, 2011
Obesity is a risk factor for Alzheimer's disease, but weight loss due to bariatric surgery may reduce the risk of this common dementia, a new study suggests. The results will be presented Sunday at The Endocrine Society's ...

Recommended for you

Scientists provide insight into genetic basis of neuropsychiatric disorders

July 21, 2017
A study by scientists at the Children's Medical Center Research Institute at UT Southwestern (CRI) is providing insight into the genetic basis of neuropsychiatric disorders. In this research, the first mouse model of a mutation ...

Scientists identify new way cells turn off genes

July 19, 2017
Cells have more than one trick up their sleeve for controlling certain genes that regulate fetal growth and development.

South Asian genomes could be boon for disease research, scientists say

July 18, 2017
The Indian subcontinent's massive population is nearing 1.5 billion according to recent accounts. But that population is far from monolithic; it's made up of nearly 5,000 well-defined sub-groups, making the region one of ...

Mutant yeast reveals details of the aberrant genomic machinery of children's high-grade gliomas

July 18, 2017
St. Jude Children's Research Hospital biologists have used engineered yeast cells to discover how a mutation that is frequently found in pediatric brain tumor high-grade glioma triggers a cascade of genomic malfunctions.

Late-breaking mutations may play an important role in autism

July 17, 2017
A study of nearly 6,000 families, combining three genetic sequencing technologies, finds that mutations that occur after conception play an important role in autism. A team led by investigators at Boston Children's Hospital ...

Newly discovered gene variants link innate immunity and Alzheimer's disease

July 17, 2017
Three new gene variants, found in a genome wide association study of Alzheimer's disease (AD), point to the brain's immune cells in the onset of the disorder. These genes encode three proteins that are found in microglia, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.