Origin of aggressive ovarian cancer discovered

March 6, 2013

Cornell University researchers have discovered a likely origin of epithelial ovarian cancer (ovarian carcinoma), the fifth leading cause of cancer death among women in the United States.

Pinpointing where this cancer originates has been difficult because 70 percent of patients are in advanced stages of disease by the time it is detected. Because the origin of ovarian carcinoma development is unknown, early have so far been unsuccessful.

Some epithelial cancers are known to occur in transitional zones between two types of epithelium (layers of tissue that line the body and organs and form ), while others originate in epithelial tissue . All organs have the capacity for regeneration, which is done by located in areas of each organ called stem cell niches.

With this knowledge, the researchers discovered a novel stem cell niche for the ovarian in mice and showed that ovarian carcinoma preferentially originates from stem cells found in that niche, according to the study published March 6 in the journal Nature. This stem cell niche lies in a transitional area known as the hilum region, a layer of cells that links the to the rest of the body.

"We now know where these cells are located in mice, so we can look in humans in those areas," said Alexander Nikitin, professor of pathology, leader of the Cornell Stem Cell Program and the paper's senior author. Andrea Flesken-Nikitin, a in Nikitin's lab, is the paper's lead author. The findings also provide a guide for scientists to look for stem cell niches and sources of cancer in other transitional zones in other organs, Nikitin added.

The researchers proved that stem cells from the hilum region were highly prone to ovarian carcinoma, using the most current genetic research techniques.

The researchers first found that cells in the hilum region express a known marker for stem cells, called ALDH1. They then isolated ALDH1 positive cells, sequenced their genetic profiles and found many markers previously reported for stem cells in other organs.

One of these markers, LGR5, has been studied for intestinal stem cells by other researchers who have bred special mice and developed an advanced method that uses a fluorescent protein to follow stem cells. The gene encoding the fluorescent protein is passed down from a stem cell to each generation of daughter cells, thereby marking the lineage. The technique "allows you to see the fate of stem cells over time," said Nikitin. Using the method on the hilum cells, "we showed that cells from the hilum area spread around the whole ovary."

Finally, the researchers microdissected ovary and hilum cells, inactivated two tumor suppressor genes p53 and Rb1, whose pathways are commonly altered in human aggressive ovarian , and injected cells into the abdominal cavity of mice. Very few tumors developed in the mice injected with ovary cells, but almost all of the mice injected with hilum cells died after developing aggressive, metastasizing cancers that were similar to human ovarian carcinomas.

In future work, the researchers will look for stem cells and sources of cancer in transitional zones in the human ovary and other organs, such as the stomach, rectum and uterine cervix.

Explore further: Cancer stem cells recruit normal stem cells to fuel ovarian cancer

More information: "Ovarian surface epithelium at the junction area contains cancer-prone stem cell niche" appears online ahead of print March 6, 2013 in Nature. The authors are: Andrea Flesken-Nikitin, Chang-Il Hwang, Chieh-Yang Cheng, Tatyana V. Michurina, Grigori Enikolopov and Alexander Yu. Nikitin. The paper can be obtained at www.nature.org using the DOI: 10.1038/nature11979

Related Stories

Cancer stem cells recruit normal stem cells to fuel ovarian cancer

July 18, 2011
Researchers at the University of Michigan Comprehensive Cancer Center have found that a type of normal stem cell fuels ovarian cancer by encouraging cancer stem cells to grow.

New study reveals pigs could grow human organs

June 21, 2011
(PhysOrg.com) -- At the annual European Society of Human Genetics conference, a group of researchers presented their newly discovered technique that may soon enable pigs to grow human organs for transplant.

Researchers find cancer aggression differences in different types of prostate cells

February 25, 2013
(Medical Xpress)—A research team made up of representatives from several cancer research centers in the United States has found that cancers that develop in the prostate of mice may be either aggressive or sluggish depending ...

Recommended for you

Physical activity could combat fatigue, cognitive decline in cancer survivors

July 25, 2017
A new study indicates that cancer patients and survivors have a ready weapon against fatigue and "chemo brain": a brisk walk.

Breaking the genetic resistance of lung cancer and melanoma

July 25, 2017
Researchers from Monash University and the Memorial Sloan Kettering Cancer Center (MSKCC, New York) have discovered why some cancers – particularly lung cancer and melanoma – are able to quickly develop deadly resistance ...

Anti-cancer chemotherapeutic agent inhibits glioblastoma growth and radiation resistance

July 24, 2017
Glioblastoma is a primary brain tumor with dismal survival rates, even after treatment with surgery, chemotherapy and radiation. A small subpopulation of tumor cells—glioma stem cells—is responsible for glioblastoma's ...

New therapeutic approach for difficult-to-treat subtype of ovarian cancer identified

July 24, 2017
A potential new therapeutic strategy for a difficult-to-treat form of ovarian cancer has been discovered by Wistar scientists. The findings were published online in Nature Cell Biology.

Immune cells the missing ingredient in new bladder cancer treatment

July 24, 2017
New research offers a possible explanation for why a new type of cancer treatment hasn't been working as expected against bladder cancer.

No dye: Cancer patients' gray hair darkened on immune drugs

July 21, 2017
Cancer patients' gray hair unexpectedly turned youthfully dark while taking novel drugs, and it has doctors scratching their heads.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.