Solving the 'Cocktail Party Problem': How we can focus on 1 speaker in noisy crowds

March 6, 2013, Cell Press
This is a cartoon illustrating the idea that at a cocktail party the brain activity synchronizes to that of an attended speaker, effectively putting them ‘on the same wavelength.’ Credit: Neuron, Zion-Golumbic et al.

In the din of a crowded room, paying attention to just one speaker's voice can be challenging. Research in the March 6 issue of the Cell Press journal Neuron demonstrates how the brain hones in on one speaker to solve this "Cocktail Party Problem."

Researchers discovered that are shaped so that the brain can selectively track the from the speaker of interest and at the same time exclude competing sounds from other speakers. The findings could have important implications for helping individuals with a range of deficits such as those associated with , autism, and aging.

"In hearing, there is no way to 'close your ear,' so all the sounds in the environment are represented in the brain, at least at the sensory level," explains senior author Dr. Charles Schroeder, of Columbia University's Department of Psychiatry. "While confirming this, we also provide the first clear evidence that there may be brain locations in which there is exclusive representation of an attended speech segment, with ignored conversations apparently filtered out." In this way, when concentrating hard on such an "attended" speaker, one is barely, if at all, aware of ignored speakers.

Location of sites with signifcant LF phase-ITC (left) and HG power-ITC (right) in both conditions. The colors of the dots represent the ITC value at each site Credit: Neuron, Zion-Golumbic et al.

Using direct recording of brain activity in surgical epilepsy patients, who were listening to natural spoken sentences, Dr. Schroeder and Dr. Elana Zion Golumbic, also of Columbia University, and their colleagues from New York University, University of Maryland, and Hillside-Long Island Jewish found two types of effects. In and near auditory cortex, reflect both attended and ignored speech, but attended speech generates higher signal amplitudes. However, in regions of the brain involved in "higher-order processing," such as language and attention control, representation of attended speech was clear, while that of ignored speech was not detectable. Remarkably, the selective, higher-order representation is progressively refined as a sentence unfolds.

"Most studies use very simplified, unnatural stimuli to study the Cocktail Party Problem—like brief beeps, or even brief phrases—whereas we were able show that with appropriate techniques, we could study this problem using natural speech," says Dr. Schroeder. "This will stimulate future research to continue the study of this and related issues under rich, natural conditions. Just as importantly, the ability to directly analyze widespread activity patterns in surgical provides an unprecedented opportunity to firmly connect the work on the Map at the model systems level in mice, songbirds, and nonhuman primates to the study of capacities like language and music, that may be uniquely human."

Explore further: New study sheds light on how selective hearing works in the brain

More information: Neuron, Zion-Golumbic et al.: "Mechanisms Underlying Selective Neuronal Tracking of Attended Speech at a 'Cocktail Party'." dx.doi.org/10.1016/j.neuron.2012.12.037

Related Stories

New study sheds light on how selective hearing works in the brain

April 18, 2012
The longstanding mystery of how selective hearing works – how people can tune in to a single speaker while tuning out their crowded, noisy environs – is solved this week in the journal Nature by two scientists from ...

Brain 'talks over' boring speech quotes

March 26, 2012
(Medical Xpress) -- Storytelling is a skill not everyone can master, but even the most crashing bore gets help from their audience’s brain which ‘talks over’ their monotonous quotes, according to scientists.

Brain 'hears' voices when reading direct speech

July 26, 2011
(Medical Xpress) -- When reading direct quotations, the brain ‘hears’ the voice of the speaker, say scientists.

Listen up: Abnormality in auditory processing underlies dyslexia

December 21, 2011
People with dyslexia often struggle with the ability to accurately decode and identify what they read. Although disrupted processing of speech sounds has been implicated in the underlying pathology of dyslexia, the basis ...

Recommended for you

When the eyes move, the eardrums move, too

January 23, 2018
Simply moving the eyes triggers the eardrums to move too, says a new study by Duke University neuroscientists.

Cognitive training helps regain a younger-working brain

January 23, 2018
Relentless cognitive decline as we age is worrisome, and it is widely thought to be an unavoidable negative aspect of normal aging. Researchers at the Center for BrainHealth at The University of Texas at Dallas, however, ...

Lifting the veil on 'valence,' brain study reveals roots of desire, dislike

January 23, 2018
The amygdala is a tiny hub of emotions where in 2016 a team led by MIT neuroscientist Kay Tye found specific populations of neurons that assign good or bad feelings, or "valence," to experience. Learning to associate pleasure ...

Your brain responses to music reveal if you're a musician or not

January 23, 2018
How your brain responds to music listening can reveal whether you have received musical training, according to new Nordic research conducted in Finland (University of Jyväskylä and AMI Center) and Denmark (Aarhus University).

New neuron-like cells allow investigation into synthesis of vital cellular components

January 22, 2018
Neuron-like cells created from a readily available cell line have allowed researchers to investigate how the human brain makes a metabolic building block essential for the survival of all living organisms. A team led by researchers ...

Finding unravels nature of cognitive inflexibility in fragile X syndrome

January 22, 2018
Mice with the genetic defect that causes fragile X syndrome (FXS) learn and remember normally, but show an inability to learn new information that contradicts what they initially learned, shows a new study by a team of neuroscientists. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.