New lung cancer study takes page from Google's playbook

March 25, 2013

A new study shows that the same sort of mathematical model that Google uses to predict which websites people want to visit may help researchers predict how lung cancer spreads through the human body.

The same sort of mathematical model used to predict which websites people are most apt to visit is now showing promise in helping map how spreads in the human body, according to a new study published in the journal Cancer Research.

A team of researchers used an algorithm similar to the PageRank and to the Viterbi Algorithm for digital communication to analyze the spread patterns of lung cancer. The team includes experts from the University of Southern California (USC), Scripps Clinic, The Scripps Research Institute, University of California, San Diego Moores Cancer Center and Memorial Sloan-Kettering in New York.

"This research demonstrates how similar the Internet is to a ," said USC Viterbi School of Engineering Professor Paul Newton, Ph.D., the lead and corresponding author of the study. "The same types of tools that help us understand the spread of information through the web can help us understand the spread of cancer through the human body."

Employing a sophisticated system of mathematical equations known as a Markov chain model, the research team – guided by USC applied mathematicians– found that metastatic lung cancer does not progress in a single direction from primary tumor site to distant locations, which has been the traditional medical view. Instead, they found that cancer cell movement around the body likely occurs in more than one direction at a time.

Researchers also learned that the first site to which the cells spread plays a key role in the progression of the disease. The study showed that some parts of the body serve as "sponges" that are relatively unlikely to further spread lung to other areas of the body. The study identified other areas as "spreaders" for .

The study revealed that for lung cancer, the main spreaders are the adrenal gland and kidney, whereas the main sponges are the regional lymph nodes, liver and bone.

The study applied the advanced math model to data from human autopsy reports of 163 lung cancer patients in the New England area, from 1914 to 1943. This time period was targeted because it predates the use of radiation and chemotherapy, providing researchers a clear view of how cancer progresses if left untreated. Among the 163 patients, researchers charted the advancement patterns of 619 different metastases to 27 distinct body sites.

The study's findings could potentially impact clinical care by helping guide physicians to targeted treatment options, designed to curtail the spread of lung cancer. For example, if the cancer is found to have moved to a known spreader location, imaging tests and interventions can be quickly considered for focused treatment before the cells may be more widely dispersed. Further study is needed in this area.

Keeping tabs on cancer's movement in the body is vital to patient care. While a primary cancer tumor (confined to a single location) is often not fatal, a patient's prognosis can worsen if the cancer metastasizes – that is, flakes off and travels to other parts of the body to form new tumors.

The study is part of a relatively new movement to involve physical sciences in oncology research. Mathematics probability models that interpret data from specific patient populations offer a new alternative to the established approach of relying on broader clinical trends to predict where, and how fast, cancer will spread.

Explore further: Will my breast cancer spread? Discovery may predict probability of metastasis

Related Stories

Will my breast cancer spread? Discovery may predict probability of metastasis

October 23, 2011
Researchers from Huntsman Cancer Institute (HCI) at the University of Utah have discovered a new way to model human breast cancer that could lead to new tools for predicting which breast cancers will spread and new ways to ...

Researchers discover protein that may control the spread of cancer

February 26, 2013
Researchers at the University of Hawai'i Cancer Center have uncovered a novel mechanism that may lead to more selective ways to stop cancer cells from spreading. Associate Professor Joe W. Ramos PhD, a cancer biologist at ...

Many lung cancer patients get radiation therapy that may not prolong their lives

February 13, 2012
A new study has found that many older lung cancer patients get treatments that may not help them live longer. Published early online in CANCER, a peer-reviewed journal of the American Cancer Society, the findings suggest ...

Study identifies gene critical to development and spread of lung cancer

April 24, 2012
A single gene that promotes initial development of the most common form of lung cancer and its lethal metastases has been identified by researchers at Mayo Clinic in Florida. Their study suggests other forms of cancer may ...

Chemical engineer studies breast cancer by building bone, brain and lung tissues

October 3, 2012
Shelly Peyton, a chemical engineer at the University of Massachusetts Amherst, says scientists know that breast cancer will spread to many different types of tissues in the body, and that this migration is the key reason ...

Gene inactivation drives spread of melanoma: study

June 11, 2012
Why do some cancers spread rapidly to other organs and others don't metastasize? A team of UNC researchers led by Norman Sharpless, MD, have identified a key genetic switch that determines whether melanoma, a lethal skin ...

Recommended for you

No dye: Cancer patients' gray hair darkened on immune drugs

July 21, 2017
Cancer patients' gray hair unexpectedly turned youthfully dark while taking novel drugs, and it has doctors scratching their heads.

Shooting the achilles heel of nervous system cancers

July 20, 2017
Virtually all cancer treatments used today also damage normal cells, causing the toxic side effects associated with cancer treatment. A cooperative research team led by researchers at Dartmouth's Norris Cotton Cancer Center ...

Molecular changes with age in normal breast tissue are linked to cancer-related changes

July 20, 2017
Several known factors are associated with a higher risk of breast cancer including increasing age, being overweight after menopause, alcohol intake, and family history. However, the underlying biologic mechanisms through ...

Immune-cell numbers predict response to combination immunotherapy in melanoma

July 20, 2017
Whether a melanoma patient will better respond to a single immunotherapy drug or two in combination depends on the abundance of certain white blood cells within their tumors, according to a new study conducted by UC San Francisco ...

Discovery could lead to better results for patients undergoing radiation

July 19, 2017
More than half of cancer patients undergo radiotherapy, in which high doses of radiation are aimed at diseased tissue to kill cancer cells. But due to a phenomenon known as radiation-induced bystander effect (RIBE), in which ...

Definitive genomic study reveals alterations driving most medulloblastoma brain tumors

July 19, 2017
The most comprehensive analysis yet of medulloblastoma has identified genomic changes responsible for more than 75 percent of the brain tumors, including two new suspected cancer genes that were found exclusively in the least ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.