Gene inactivation drives spread of melanoma: study

June 11, 2012

Why do some cancers spread rapidly to other organs and others don't metastasize? A team of UNC researchers led by Norman Sharpless, MD, have identified a key genetic switch that determines whether melanoma, a lethal skin cancer, spreads by metastasis.

Treating melanoma is extremely challenging. The cancer spreads rapidly and to sites in the body that are remote from the original cancer site. Melanoma is the most deadly form of , and advanced melanoma kills more than 8600 Americans each year. It is the most common form of cancer in , aged 25-29 and the incidence of people under 30 developing melanoma is increasing fast – more than 50 percent in young women since 1980.

In a paper published today in the journal Cancer Cell, a team from UNC Lineberger Comprehensive Cancer Center demonstrates that inactivating a gene called LKB1 (or STK11) causes non-aggressive melanoma cells to become highly metastatic when tested in a variety of models using tumors from humans and mice. While Sharpless and his colleagues showed a role for LKB1 inactivation in lung cancer metastasis, the effects of LKB1 loss on melanoma spread is even more dramatic.

"Although we are not totally certain how LKB1 loss promotes metastasis in multiple cancer types, one important effect is the loss of LKB1 starts a chain reaction, activating a family of proteins called SRC kinases, which are known to drive metastasis," said Sharpless, who is associate director for translational research at UNC Lineberger.

"Loss of LKB1 occurs in about 30 percent of lung and 10 percent of melanoma, and ongoing studies at UNC and elsewhere will determine if these LKB1 deficient tumors have a worse prognosis. These data suggest LKB1 deficient cancers will be more likely to metastasize, and therefore more likely to be incurable."

"The work is exciting because the laboratory model reliably replicates distant metastases, helping us better understand what treatments may work for melanoma that has spread. While several targeted drugs have recently been approved by the FDA for metastatic disease, these targeted mutations don't indicate whether the disease is likely to metastasize," said Stergios Moschos, MD, clinical associate professor of hematology/oncology. Moschos works in the area of drug development for but was not involved in this research project.

Explore further: P Rex-1 protein key to melanoma metastasis

Related Stories

P Rex-1 protein key to melanoma metastasis

November 22, 2011
Researchers from UNC Lineberger Comprehensive Cancer Center are part of a team that has identified a protein, called P-Rex1, that is key to the movement of cells called melanoblasts. When these cells experience uncontrolled ...

Researchers identify key role of microRNAs in melanoma metastasis

July 11, 2011
Researchers at the NYU Cancer Institute, an NCI-designated cancer center at NYU Langone Medical Center, identified for the first time the key role specific microRNAs (miRNAs) play in melanoma metastasis to simultaneously ...

Recommended for you

Researchers pinpoint causes for spike in breast cancer genetic testing

October 20, 2017
A sharp rise in the number of women seeking BRCA genetic testing to evaluate their risk of developing breast cancer was driven by multiple factors, including celebrity endorsement, according to researchers at the University ...

Study shows how nerves drive prostate cancer

October 19, 2017
In a study in today's issue of Science, researchers at Albert Einstein College of Medicine, part of Montefiore Medicine, report that certain nerves sustain prostate cancer growth by triggering a switch that causes tumor vessels ...

Gene circuit switches on inside cancer cells, triggers immune attack

October 19, 2017
Researchers at MIT have developed a synthetic gene circuit that triggers the body's immune system to attack cancers when it detects signs of the disease.

One to 10 mutations are needed to drive cancer, scientists find

October 19, 2017
For the first time, scientists have provided unbiased estimates of the number of mutations needed for cancers to develop, in a study of more than 7,500 tumours across 29 cancer types. Researchers from the Wellcome Trust Sanger ...

Researchers target undruggable cancers

October 19, 2017
A new approach to targeting key cancer-linked proteins, thought to be 'undruggable," has been discovered through an alliance between industry and academia.

Suicide molecules kill any cancer cell

October 19, 2017
Small RNA molecules originally developed as a tool to study gene function trigger a mechanism hidden in every cell that forces the cell to commit suicide, reports a new Northwestern Medicine study, the first to identify molecules ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.