Peptides helping researchers in search for Parkinson's disease treatment

March 19, 2013
Peptides helping researchers in search for Parkinson’s disease treatment
Neurons shown above, and below an image of the peptide tissue scaffold.

(Medical Xpress)—Australian researchers have taken the first step in using bioactive peptides as the building blocks to help 'build a new brain' to treat degenerative brain disease.

Deakin University biomedical scientist Dr Richard Williams is working in a team with Dr David Nisbet from the Australian National University and Dr Clare Parish at the Florey Neuroscience Institute to develop a way to repair the damaged that cause Parkinson's disease.

Parkinson's disease develops when the (or neurons) that produce the chemical dopamine die or are damaged. Dopamine neurons produce a lubricant that helps the brain transmit signals to the body that control muscles and movement. When these cells die or are damaged the result is the shaking and that are among the common symptoms of the disease.

"We are looking at a way of helping the brain to regenerate the dead or damaged cells that transport dopamine throughout the body," Dr Williams said.

"Peptides help the body heal itself, providing many positive benefits for health, particularly in regenerative medicine; this is why the sports people were using them to recover more quickly in the current doping scandal."

Peptides helping researchers in search for Parkinson’s disease treatment

Peptides are both the building blocks and the messengers of the body; the team has used them to mimic the normal brain environment and provide the chemical signals needed to help the .

"Peptides stick together like , so in the first stage of the project we have been able to make a three dimensional material or tissue scaffold that provides the networks cells need to grow; but the peptides also carry instructions in the form of chemical signals which tell the cells to grow into new neurons," Dr Williams explained.

"Importantly, this material has the same consistency as the brain, does not cause and is non-toxic to the body.

"Our aim is to use this material to support the patient's own stem cells that could be turned into dopamine and implanted back into the brain. We expect that when implanted the material and stem cells would be accepted by the brain as normal tissue and grow to replace the damaged or dead cells."

While the research is not yet complete, Dr Williams is excited by the possibilities this work offers to the treatment of degenerative conditions.

"It is no secret that we are living longer, and with this we are seeing an increase in many conditions that come about because of ageing such Parkinson's. By developing biomaterials, like the ones we are working on, it could be possible to help the body to regenerate and provide an improved quality of life to the older members of our community," he said.

"This work can also be adapted to other parts of the body which struggle to repair themselves, such as new cartilage for joints, muscle and heart cells, bones and teeth. Ultimately, it will be like taking your car to the garage to have new parts fitted to replace the worn out ones."

The results of the first stage of this Australian Research Council funded project will be published in the international journal Soft Matter.

Explore further: Dopamine controls formation of new brain cells

Related Stories

Dopamine controls formation of new brain cells

April 8, 2011
(PhysOrg.com) -- A study of the salamander brain has led researchers at Karolinska Institutet to discover a hitherto unknown function of the neurotransmitter dopamine. In an article published in the prestigious scientific ...

Stem cell research hopes to repair brain damage of Parkinson's disease

November 11, 2011
Australian scientists have developed a new technique using stem cells, in the hope to replace damaged cells in Parkinson's disease. The technique could be developed for application in other degenerative conditions.

Recommended for you

Molecular hitchhiker on human protein signals tumors to self-destruct

July 24, 2017
Powerful molecules can hitch rides on a plentiful human protein and signal tumors to self-destruct, a team of Vanderbilt University engineers found.

Researchers develop new method to generate human antibodies

July 24, 2017
An international team of scientists has developed a method to rapidly produce specific human antibodies in the laboratory. The technique, which will be described in a paper to be published July 24 in The Journal of Experimental ...

New vaccine production could improve flu shot accuracy

July 24, 2017
A new way of producing the seasonal flu vaccine could speed up the process and provide better protection against infection.

A sodium surprise: Engineers find unexpected result during cardiac research

July 20, 2017
Irregular heartbeat—or arrhythmia—can have sudden and often fatal consequences. A biomedical engineering team at Washington University in St. Louis examining molecular behavior in cardiac tissue recently made a surprising ...

Want to win at sports? Take a cue from these mighty mice

July 20, 2017
As student athletes hit training fields this summer to gain the competitive edge, a new study shows how the experiences of a tiny mouse can put them on the path to winning.

'Smart' robot technology could give stroke rehab a boost

July 19, 2017
Scientists say they have developed a "smart" robotic harness that might make it easier for people to learn to walk again after a stroke or spinal cord injury.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.