Scientists discover new mechanisms for relaxing airways using bitter tasting substances

March 5, 2013

That kale and bitter melon you are eating may someday save your life. An interdisciplinary team of scientists at the University of Massachusetts Medical School have taken a step forward in understanding how the substances that give some foods their bitter flavor also act to reverse the contraction of airway cells, a process known as bronchodilation. This effect may one day be harnessed to provide improved treatments for airway obstructive diseases such as asthma and chronic obstructive pulmonary disease. The findings were published on March 5 in the open access journal PLOS Biology.

"I am excited that someday, with more research, there may be a new class of bronchodilators which are able to reverse an quicker and with fewer side effects than is currently available to patients," said Ronghua ZhuGe, PhD, associate professor of microbiology and physiological systems and senior author of the study.

The is mediated by bundled in our . Most humans experience five types of tastes: sweet, salty, sour, bitter and savory. Bitter taste receptors most likely evolved to help alert the body to potentially harmful foods that have spoiled or are toxic. The receptors have long been thought to only exist in certain cells present in the tongue. Over the last few years, however, scientists have come to realize that these receptors are present in many other cells throughout the body. Specifically, bitter taste receptors on in the airway act to relax the cells when exposed to bitter-tasting substances.

A hallmark of an asthma attack is excessive contraction of smooth muscle cells, which causes narrowing of the airways and subsequent breathing difficulties. The fact that bitter substances can relax these smooth muscle cells suggests that they may have the potential to halt asthma attacks and in fact could even be an improvement over current treatments since the relaxation effects are quite fast. Indeed, experiments in mice suggest that the effects are stronger.

However, the mechanisms by which bitter taste receptor activation causes a cell to relax were unknown. To help unravel these mechanisms, Dr. ZhuGe and colleagues examined the effect of bitter substances on the contraction of airways and in single isolated cells.

During an asthma attack, channels on the membrane of smooth muscle cells in the airways open. This allows calcium to flow into the cell, causing it to contract. When the cells contract, the airway becomes narrower and makes breathing more difficult. Dr. ZhuGe and colleagues determined that bitter substances act by shutting down these calcium channels, allowing bronchodilation.

, like most receptors, span the plasma membrane of the cell. Part of the receptor is outside the cell, able to bind (and hence "sense") bitter substances outside the cell. When a bitter compound binds to a bitter taste receptor, the receptor releases a G-protein, which then splits into two parts: a G alpha subunit and G beta-gamma dimer. "It is the G beta-gamma dimer that likely acts to close the calcium channels on the plasma membrane," said Kevin Fogarty, director of the biomedical imaging group in the program in molecular medicine at UMMS, and a co-author of the study. "Once the channels are closed, the calcium level returns to normal and the cell relaxs," he said. "This ends the asthma attack."

"With this new understanding of how bitter substances are able to relax airways, we can focus our attention on studying these receptors and on finding even more potent bitter compounds with the potential to be used therapeutically to end asthma attacks," said Dr. ZhuGe.

Explore further: Researchers move closer to identifying new class of asthma, COPD drugs

More information: Zhang C-H, Lifshitz LM, Uy KF, Ikebe M, Fogarty KE, et al. (2013) The Cellular and Molecular Basis of Bitter Tastant-Induced Bronchodilation. PLOS Biol 11(3): e1001501. doi:10.1371/journal.pbio.1001501

Related Stories

Researchers move closer to identifying new class of asthma, COPD drugs

May 15, 2011
Researchers in Baltimore have identified new compounds whichrelax airway muscles and may provide relief from shortness of breath for patients with COPD and asthma. The bitter-tasting compounds are at least as, if not more, ...

How do you stop tasting?

August 2, 2011
New findings may lend insight into why some people are especially sensitive to bitter tastes. Scientists from the Monell Center and Givaudan Flavors have identified a protein inside of taste cells that acts to shorten bitter ...

New bitter blocker discovered

June 2, 2011
Although bitterness can sometimes be desirable – such as in the taste of coffee or chocolate – more often bitter taste causes rejection that can interfere with food selection, nutrition and therapeutic compliance. ...

Bitter taste receptors for Stevia sweeteners discovered

May 31, 2012
Stevia is regarded as a healthy alternative to sugar. Yet there are drawbacks to the Stevia products recently approved as sweeteners by the European Union. One of these is a long-lasting bitter after-taste. Scientists at ...

Recommended for you

Want to win at sports? Take a cue from these mighty mice

July 20, 2017
As student athletes hit training fields this summer to gain the competitive edge, a new study shows how the experiences of a tiny mouse can put them on the path to winning.

'Smart' robot technology could give stroke rehab a boost

July 19, 2017
Scientists say they have developed a "smart" robotic harness that might make it easier for people to learn to walk again after a stroke or spinal cord injury.

Engineered liver tissue expands after transplant

July 19, 2017
Many diseases, including cirrhosis and hepatitis, can lead to liver failure. More than 17,000 Americans suffering from these diseases are now waiting for liver transplants, but significantly fewer livers are available.

Lunatic Fringe gene plays key role in the renewable brain

July 19, 2017
The discovery that the brain can generate new cells - about 700 new neurons each day - has triggered investigations to uncover how this process is regulated. Researchers at Baylor College of Medicine and Jan and Dan Duncan ...

New animal models for hepatitis C could pave the way for a vaccine

July 19, 2017
They say that an ounce of prevention is worth a pound of cure. In the case of hepatitis C—a disease that affects nearly 71 million people worldwide, causing cirrhosis and liver cancer if left untreated—it might be worth ...

Omega-3 fatty acids fight inflammation via cannabinoids

July 18, 2017
Chemical compounds called cannabinoids are found in marijuana and also are produced naturally in the body from omega-3 fatty acids. A well-known cannabinoid in marijuana, tetrahydrocannabinol, is responsible for some of its ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.