After brain injury, new astrocytes play unexpected role in healing

April 24, 2013, Duke University Medical Center
This is an artist's rendition of a special astrocyte. Credit: Andrew Swift

The production of a certain kind of brain cell that had been considered an impediment to healing may actually be needed to staunch bleeding and promote repair after a stroke or head trauma, researchers at Duke Medicine report.

These cells, known as astrocytes, can be produced from stem cells in the brain after injury. They migrate to the site of damage where they are much more effective in promoting recovery than previously thought. This insight from studies in mice, reported online April 24, 2013, in the journal Nature, may help researchers develop treatments that foster .

"The injury recovery process is complex," said senior author Chay T. Kuo, M.D., PhD, George W. Brumley Assistant Professor of , Pediatrics and Neurobiology at Duke University. "There is a lot of interest in how new neurons can stimulate , but if you make neurons without stopping the bleeding, the neurons don't even get a chance. The brain somehow knows this, so we believe that's why it produces these unique astrocytes in response to injury."

Each year, more than 1.7 million people in the United States suffer a , according to the . Another 795,000 people a year suffer a stroke. Few therapies are available to treat the damage that often results from such injuries.

Kuo and colleagues at Duke are interested in replacing lost neurons after a brain injury as a way to restore function. Once damaged, mature neurons cannot multiply, so most research efforts have focused on inducing to produce more immature neurons to replace them.

This strategy has proved difficult, because in addition to making neurons, also produce astrocytes and , known as . Although glial cells are important for maintaining the normal function of neurons in the brain, the increased production of astrocytes from neural stem cell has been considered an unwanted byproduct, causing more harm than good. Proliferating astrocytes secrete proteins that can induce tissue inflammation and undergo gene mutations that can lead to aggressive brain tumors.

In their study of mice, the Duke team found an unexpected insight about the astrocytes produced from stem cells after injury. Stem cells live in a special area or "niche" in the postnatal/adult brain called the subventricular zone, and churn out neurons and glia in the right proportions based on cues from the surrounding tissue.

After an injury, however, the subventricular niche pumps out more astrocytes. Significantly, the Duke team found they are different from astrocytes produced in most other regions of the brain. These cells make their way to the injured area to help make an organized scar, which stops the bleeding and allows tissue recovery.

When the generation of these astrocytes in the subventricular niche was experimentally blocked after a brain injury, hemorrhaging occurred around the injured areas and the region did not heal.

Kuo said the finding was made possible by insights about astrocytes from Cagla Eroglu, PhD, whose laboratory next door to Kuo's conducts research on astrocyte interactions with neurons.

"Cagla and I started at Duke together and have known each other since our postdoctoral days," Kuo said. "To have these stem cell-made astrocytes express a unique protein that Cagla understands more than anyone else, it's just a wonderful example of scientific serendipity and collaboration."

Additionally, Kuo said first author Eric J. Benner, M.D., PhD, a former postdoctoral fellow who now has his own laboratory at Duke, provided key clinical correlations on brain injury as a physician-scientist and practicing neonatologist in the Jean and George Brumley Jr. Neonatal-Perinatal Research Institute.

"We are very excited about this innate flexibility in neural stem cell behavior to know just what to do to help the brain after injury," Kuo said. "Since bleeding in the brain after injury is a common and serious problem for patients, further research into this area may lead to effective therapies for accelerated recovery after injury."

Explore further: Astrocytes control the generation of new neurons from neural stem cells

More information: Research paper: dx.doi.org/10.1038/nature12069

Related Stories

Astrocytes control the generation of new neurons from neural stem cells

August 24, 2012
Astrocytes are cells that have many functions in the central nervous system, such as the control of neuronal synapses, blood flow, or the brain's response to neurotrauma or stroke.

Researchers demystify a fountain of youth in the adult brain

July 13, 2011
Duke University Medical Center researchers have found that a "fountain of youth" that sustains the production of new neurons in the brains of rodents is also believed to be present in the human brain. The existence of a vital ...

Researchers help find new therapeutic target for treating traumatic brain injury

April 9, 2013
(Medical Xpress)—A research team including members of the Department of Bioengineering in the University of Pennsylvania School of Engineering and Applied Science has discovered that drug intervention to reduce intercellular ...

Naturally produced protein could boost brain repair

January 10, 2012
(Medical Xpress) -- Scientists from the Medical Research Council (MRC) have discovered that a protein produced by blood vessels in the brain could be used to help the brain repair itself after injury or disease.

Recommended for you

Exercise-induced hormone irisin triggers bone remodeling in mice

December 13, 2018
Exercise has been touted to build bone mass, but exactly how it actually accomplishes this is a matter of debate. Now, researchers show that an exercise-induced hormone activates cells that are critical for bone remodeling ...

Law professor suggests a way to validate and integrate deep learning medical systems

December 13, 2018
University of Michigan professor W. Nicholson Price, who also has affiliations with Harvard Law School and the University of Copenhagen Faculty of Law, suggests in a Focus piece published in Science Translational Medicine, ...

Faster test for Ebola shows promising results in field trials

December 13, 2018
A team of researchers with members from the U.S., Senegal and Guinea, in cooperation with Becton, Dickinson and Company (BD), has developed a faster test for the Ebola virus than those currently in use. In their paper published ...

Pain: Perception and motor impulses arise in brain independently of one another

December 13, 2018
Pain is a negative sensation that we want to get rid of as soon as possible. In order to protect our bodies, we react by withdrawing the hand from heat, for example. This action is usually understood as the consequence of ...

Drug targets for Ebola, Dengue, and Zika viruses found in lab study

December 13, 2018
No drugs are currently available to treat Ebola, Dengue, or Zika viruses, which infect millions of people every year and result in severe illness, birth defects, and even death. New research from the Gladstone Institutes ...

Researchers give new insight to muscular dystrophy patients

December 13, 2018
New research by University of Minnesota scientists has revealed the three-dimensional structure of the DUX4 protein, which is responsible for the disease, facioscapulohumeral muscular dystrophy (FSHD). Unlike the majority ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.