Deciphering the cellular reading system of DNA methylation

April 12, 2013
Deciphering the cellular reading system of DNA methylation
Braille reading. Credit: Roman Milert / Fotolia.com.

(Medical Xpress)—Scientists from the FMI identify how a family of proteins reads the methylation marks on the DNA so critical for cell development. These MBD proteins bind directly to methylation marks and inactivate the respective stretches of DNA. The findings are important because they provide the means to better understand how this epigenetic mark influences cell fates.

Dirk Schübeler and his team at the Friedrich Miescher Institute for have now been able to show how proteins that bind methylated DNA recognize and interpret this well-known epigenetic modification in our genome. These findings have been published in the last issue of Cell.

Using a novel approach, they could show how a specialized group of proteins called MBD proteins directly binds to methylation marks on the DNA through their methyl-CpG-. More methyl knobs on the DNA lead to more MBD protein binding, but reduced activity of genes. MBD proteins continuously read the marks on the DNA and follow them as they change, for example, when a stem cell becomes a neuron.

"We are excited about these findings since they allow us to better understand how methylation marks on DNA are interpreted," said Schübeler. "They show how DNA methylation, which changes during different developmental programs, disease or upon environmental stimuli, is read by the cell."

The scientists could further show that MBD proteins, besides interpreting DNA methylation, have additional functions that can be attributed to different and their interactions with other transcriptional regulators.

While several MBD proteins can read DNA methylation, one of them is of particular biomedical interest because mutations in this MBD protein cause a known as Rett syndrome. "Rett syndrome is caused by diverse mutations of the MBD protein ," said Tuncay Baubec, a scientist in Dirk Schübeler's group who is the main contributor to this study. "Our novel approach allows us now to study how such mutations cause the disease and how changes in and MBD protein interactions influence genome regulation."

Explore further: Controlling patterns of DNA methylation

More information: Baubec, T. et al. (2013) Methylation-dependent and -independent genomic targeting principles of the MBD protein family, Cell, 153, 480-492. www.sciencedirect.com/science/ … ii/S0092867413003334

Related Stories

Controlling patterns of DNA methylation

October 28, 2011
A study performed by scientists in Dirk Schübeler's team at the Friedrich Miescher Institute for Biomedical Research in Basel identifies DNA sequences that autonomously determine DNA methylation patterns. Genomic patterns ...

How protein networks stabilize muscle fibers: Same mechanism as for DNA

January 23, 2012
The same mechanism that stabilises the DNA in the cell nucleus is also important for the structure and function of vertebrate muscle cells. This has been established by RUB-researchers led by Prof. Dr. Wolfgang Linke (Institute ...

Recommended for you

Association found between abnormal cerebral connectivity and variability in the PPARG gene in developing preterm infants

December 12, 2017
(Medical Xpress)—A team of researchers with King's College London and the National Institute for Health Research Biomedical Research Centre, both in the U.K., has found what they describe as a strong association between ...

Large genetic study links tendency to undervalue future rewards with ADHD, obesity

December 11, 2017
Researchers at University of California San Diego School of Medicine have found a genetic signature for delay discounting—the tendency to undervalue future rewards—that overlaps with attention-deficit/hyperactivity disorder ...

Gene variants identified that may influence sexual orientation in men and boys

December 8, 2017
(Medical Xpress)—A large team of researchers from several institutions in the U.S. and one each from Australia and the U.K. has found two gene variants that appear to be more prevalent in gay men than straight men, adding ...

Disease caused by reduction of most abundant cellular protein identified

December 8, 2017
An international team of scientists and doctors has identified a new disease that results in low levels of a common protein found inside our cells.

Study finds genetic mutation causes 'vicious cycle' in most common form of amyotrophic lateral sclerosis

December 8, 2017
University of Michigan-led research brings scientists one step closer to understanding the development of neurodegenerative disorders such as ALS.

Mutations in neurons accumulate as we age: The process may explain normal cognitive decline and neurodegeneration

December 7, 2017
Scientists have wondered whether somatic (non-inherited) mutations play a role in aging and brain degeneration, but until recently there was no good technology to test this idea. A study published online today in Science, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.