Research deciphers HIV attack plan

April 1, 2013
Bette Korber.

(Medical Xpress)—A new study by Los Alamos National Laboratory and University of Pennsylvania scientists defines previously unknown properties of transmitted HIV-1, the virus that causes AIDS. The viruses that successfully pass from a chronically infected person to a new individual are both remarkably resistant to a powerful initial human immune-response mechanism, and they are blanketed in a greater amount of envelope protein that helps them access and enter host cells.

These findings will help inform and interpretation of , and provide new insights into the basic biology of viral/host dynamics of infection.

During the course of each AIDS infection, the HIV-1 virus evolves within the infected person to escape the host's natural immune response and adapt to the local environment within the infected individual. Because HIV evolves so rapidly and so extensively, each person acquires and harbors a complex, very diverse set of that develops over the years of their infection. Yet when HIV is transmitted to a new person from their partner, typically only a single virus from the diverse set in the partner is transmitted to establish the new infection.

The key discoveries here are the specific features that distinguish those specific viruses which successfully move to the new host, compared with the myriad forms in the viral population present in a chronically infected individual.

"The viruses that make it through transmission barriers to infect a new person are particularly infectious and resilient," said Los Alamos National Laboratory scientist Bette Korber. "Through this study we now better understand the biology that defines that ."

The team set out to determine whether the viruses that were successfully transmitted to a new patient might share distinct biological properties relative to those typically isolated from people with long-term, chronic infection. To do this, the group at U Penn cloned a set of intact viruses from acute infection, and a set of viruses from chronically infected people, and characterized them by measuring quantities that might be related to the virus's ability to successfully establish a new infection. They discovered several clear correlations. For example, transmitted viruses were both more infectious and contained more protective "envelope" per virus; envelope is the protein the virus uses to enter host cells.

The team identified an additional interesting property that could be a general characteristic of new viral infections: the transmitted HIV was capable of replicating and growing well in the presence of alpha interferon. Alpha interferon production is part of our innate human immune response to a new infection. As soon as a new viral infection is initiated in our bodies, local immune cells at the site of infection start secreting molecules called cytokines that have general antiviral activity and can inhibit the production of the newly infected virus. Alpha interferon is one of these potent cytokines.

In the early days of an HIV infection, this innate immune response increases to an intense level, called a "cytokine storm," which gradually recedes during infection. For a newly transmitted HIV to successfully establish , it must grow and expand in the new host while facing this cytokine storm. Although typical chronic viruses are sensitive to and inhibited by alpha interferon, transmitted HIV-1 viruses grew well in the presence of interferon.

Los Alamos scientists Elena Giorgi, James Theiler and Bette Korber were part of the analysis team working closely with investigators at the University of Pennsylvania, Nick Parrish and Beatrice Hahn. The paper, "Phenotypic properties of transmitted founder HIV-1" is in this week's issue of Proceedings of the National Academy of Sciences.

Explore further: Certain mutations give HIV infection an advantage that sticks

More information: The article was published online before print March 29, 2013, doi: 10.1073/pnas.1304288110 PNAS March 29, 2013 201304288. http://www.pnas.org/content/early/2013/03/28/1304288110

Related Stories

Certain mutations give HIV infection an advantage that sticks

December 6, 2012
(Medical Xpress)—Varieties of HIV that replicate more quickly can cause infected individuals' immune systems to decline faster, new research demonstrates. The results were published by the journal PLOS Pathogens.

Entry prohibited for AIDS viruses: Peptide triazole inhibitors disrupt cell-free HIV-1

July 8, 2011
(PhysOrg.com) -- The initial entry of HIV-1 into host cells remains a compelling yet elusive target for the development of agents to prevent infection, a critical need in the fight against the global AIDS epidemic.

Why human body cannot fight HIV infection? Study results could lead to new drug therapies

July 12, 2012
University of Washington researchers have made a discovery that sheds light on why the human body is unable to adequately fight off HIV infection.

Researchers identify HIV-inhibiting mechanism

June 29, 2011
Researchers at Case Western Reserve University School of Medicine have discovered a long-sought cellular factor that works to inhibit HIV infection of myeloid cells, a subset of white blood cells that display antigens and ...

Recommended for you

Paris spotlight on latest in AIDS science

July 21, 2017
Some 6,000 HIV experts gather in Paris from Sunday to report advances in AIDS science as fading hopes of finding a cure push research into new fields.

Scientists elicit broadly neutralizing antibodies to HIV in calves

July 20, 2017
Scientists supported by the National Institutes of Health have achieved a significant step forward, eliciting broadly neutralizing antibodies (bNAbs) to HIV by immunizing calves. The findings offer insights for HIV vaccine ...

Heart toxin reveals new insights into HIV-1 integration in T cell genome

July 20, 2017
Human immunodeficiency virus (HIV)-1 may have evolved to integrate its genetic material into certain immune-cell-activating genes in humans, according to new research published in PLOS Pathogens.

Scientists capture first high-resolution image of key HIV protein transitional state

July 13, 2017
A new, three-dimensional snapshot of HIV demonstrates the radical structural transformations that enable the virus to recognize and infect host cells, according to a new study led by scientists at The Scripps Research Institute ...

Barrier to autoimmune disease may open door to HIV, study suggests

July 11, 2017
Researchers from the University of Colorado School of Medicine have discovered that a process that protects the body from autoimmune disease also prevents the immune system from generating antibodies that can neutralize the ...

Team tests best delivery mode for potential HIV vaccine

June 20, 2017
For decades, HIV has successfully evaded all efforts to create an effective vaccine but researchers at The Scripps Research Institute (TSRI) and the La Jolla Institute for Allergy and Immunology (LJI) are steadily inching ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.