New genetic screen paves the way for long-sought treatments for liver disease

April 11, 2013, Cell Press

Chronic liver failure is a major health problem that causes about one million deaths around the world each year. A study published April 11th by Cell Press in the journal Cell reveals a new type of screen for identifying genes that promote liver repair in mouse models of both acute and chronic liver disease. The study shows that the MKK4 gene could be a promising therapeutic target to enhance liver regeneration and provides a blueprint for future studies aimed at discovering new therapies for liver disease.

"It is now conceivable to develop specific pharmacological inhibitors of MKK4 in order to treat patients with liver disease," says senior study author Lars Zender of University Hospital Tuebingen. "Such treatment strategies are urgently needed in the clinic, as currently the only curative treatment option for patients with end-stage liver disease is , and the number of donors is limited."

is caused by infections with hepatitis B or C virus, as well as alcohol abuse and malnutrition. Typically, the liver can repair itself after injury by increasing the production of cells called hepatocytes, but serious disease can interfere with this process and ultimately result in liver failure.

To identify potential targets for treating liver disease, Zender and his team developed an unbiased screen to search for genes that regulate in animal disease models. After interfering with the expression of hundreds of genes in mouse livers, they found that MKK4 inhibition increased the production and survival of hepatocytes after acute and chronic , resulting in healthier livers and an increase in the long-term survival of mice. Moreover, MKK4 inhibition increased the survival and long-term viability of hepatocytes in culture, offering a much-needed strategy for improving cell transplantation in patients with liver disease.

"Based on previous studies, we would not have guessed that MKK4 would strongly influence liver regeneration," Zender says. "Our study shows that genetic screens are a powerful way to search for genes, without any preconceived notions, to identify therapeutic targets that can be used to enhance the regenerative capacity of tissues."

Explore further: Scientists shed light on how liver repairs itself

More information: Wuestefeld et al.: "A direct in vivo RNAi screen identifies MKK4 as a key regulator of liver regeneration." Cell, 2013. dx.doi.org/10.1016/j.cell.2013.03.026

Related Stories

Scientists shed light on how liver repairs itself

March 4, 2012
Scientists have shed light on how the liver repairs itself with research that could help develop drugs to treat liver disease.

Noninvasive liver tests may predict hepatitis C patient survival

June 14, 2011
Non-invasive tests for liver fibrosis, such as liver stiffness measurement or the FibroTest, can predict survival of patients with chronic hepatitis C, according to a new study in Gastroenterology, the official journal of ...

Japanese scientists show 'new' liver generation using hepatocyte cell transplantation

June 11, 2012
Researchers in Japan have found that hepatocytes, cells comprising the main tissue of the liver and involved in protein synthesis and storage, can assist in tissue engineering and create a "new liver system" in mouse models ...

Cellular target may aid in drug therapies for acute liver failure

June 3, 2011
(Medical Xpress) -- New insights into the biological mechanisms that contribute to acute liver failure could help scientists better understand—and eventually treat—a broader spectrum of liver diseases, according ...

Preventable liver disease costs more than diabetes: Team hopes to reduce burden with research-led intervention

March 27, 2013
Liver diseases have an impact on the Australian economy 40 per cent greater than chronic kidney disease and Type 2 diabetes combined, according to a report released today.

Recommended for you

Researchers illustrate how muscle growth inhibitor is activated, could aid in treating ALS

January 19, 2018
Researchers at the University of Cincinnati (UC) College of Medicine are part of an international team that has identified how the inactive or latent form of GDF8, a signaling protein also known as myostatin responsible for ...

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

Secrets of longevity protein revealed in new study

January 17, 2018
Named after the Greek goddess who spun the thread of life, Klotho proteins play an important role in the regulation of longevity and metabolism. In a recent Yale-led study, researchers revealed the three-dimensional structure ...

The HLF gene protects blood stem cells by maintaining them in a resting state

January 17, 2018
The HLF gene is necessary for maintaining blood stem cells in a resting state, which is crucial for ensuring normal blood production. This has been shown by a new research study from Lund University in Sweden published in ...

Magnetically applied MicroRNAs could one day help relieve constipation

January 17, 2018
Constipation is an underestimated and debilitating medical issue related to the opioid epidemic. As a growing concern, researchers look to new tools to help patients with this side effect of opioid use and aging.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.