K9 osteosarcoma samples identify drivers of metastasis in pediatric bone cancer

April 9, 2013

Human osteosarcoma samples are hard to come by, making the disease difficult to study. However, K9 bone cancer is genetically indistinguishable from the human form of the disease, and over 10,000 canine patients develop the disease every year. Research from the University of Colorado Cancer Center and the Colorado State University Flint Animal Cancer Center presented at the AACR Annual Meeting 2013 used easily available K9 osteosarcoma samples to discover a novel protein that governs metastasis and chemoresistance in pediatric osteosarcoma.

"We have a pediatric osteosarcoma survival rate of 75 percent. But if the disease has already metastasized at the time of diagnosis, the survival rate is only 20 percent. This study takes an important step toward stopping this metastasis and treating the most dangerous form of the disease," says Dawn Duval, PhD, investigator at the CU Cancer Center and assistant professor of molecular oncology at Colorado State University.

Duval and colleagues assessed the signatures of K9 osteosarcoma samples, comparing cancers that had shown especially long and especially short periods of disease-free progression after the common treatment of amputation and chemotherapy – the theory being that differences in these would mark the difference between metastasic and non-. The gene most different between more and less aggressive K9 osteosarcomas was the gene that makes IGF2 mRNA (called IGF2BP1) – a molecule necessary during fetal development that should go quiet after birth, but whose expression had been restarted in these aggressive cancers.

"Right away, both the over-expression of this protein and its known function made it a strong candidate driver for osteosarcoma metastasis, but we wanted to validate its function in human samples and in mouse models," Duval says.

To do so, the group analyzed IGF2BP1 expression in five available human osteosarcoma cell lines, finding an average 14-fold increase in expression compared to samples of healthy bone. Specifically, the group found that mRNA and protein expression linked to the influence of IGF2BP1 was highest in the most metastatic of these five human cell lines.

When Duval knocked down the expression of IGF2BP1, she found a three-fold decrease in the proliferation of these cells and increased sensitivity to chemotherapy with doxorubicin. The same technique produced similar results in mouse models of the disease – without IGF2BP1, mouse models developed fewer, smaller tumors.

"It's an exciting finding and one with important clinical potential," Duval says.

Though further work is needed to validate IGF2BP1 as a marker and target for controlling the metastasis of pediatric , and to identify clinically appropriate ways of targeting the molecule or its gene expression pathway, Duval is optimistic that this first step will result in improved care for the pediatric osteosarcoma patients who remain at the highest risk.

Explore further: New study finds compounds show promise in blocking STAT3 signaling as treatment for osteosarcoma

Related Stories

New study finds compounds show promise in blocking STAT3 signaling as treatment for osteosarcoma

April 11, 2011
A study appearing in the journal Investigational New Drugs and conducted by researchers at Nationwide Children's Hospital, discovered that two new small molecule inhibitors are showing promise in blocking STAT3, a protein ...

Stopping the spread of a deadly childhood bone cancer

April 3, 2012
Many children with the bone cancer, osteosarcoma, die after the tumor spreads to their lungs. In a critical step toward finding a way to stop metastasis, researchers at Georgetown Lombardi Comprehensive Cancer Center say ...

Little molecule makes big difference in bladder cancer metastasis

April 9, 2013
In order to kill, bladder cancer must metastasize, most commonly to the lung – what are the differences between bladder cancers that do and do not make this deadly transition? Research presented by the Director of the University ...

Biomarker predicts chemo response for osteosarcoma

July 3, 2012
(Medical Xpress) -- Scientists have found that a protein expressed by some cancers is a good predictor of how the cancer will respond to standard chemotherapy for osteosarcoma, the most common bone cancer in children. Knowing ...

Recommended for you

Cancer-death button gets jammed by gut bacterium

July 27, 2017
Researchers at Michigan Medicine and in China showed that a type of bacterium is associated with the recurrence of colorectal cancer and poor outcomes. They found that Fusobacterium nucleatum in the gut can stop chemotherapy ...

Researchers release first draft of a genome-wide cancer 'dependency map'

July 27, 2017
In one of the largest efforts to build a comprehensive catalog of genetic vulnerabilities in cancer, researchers from the Broad Institute of MIT and Harvard and Dana-Farber Cancer Institute have identified more than 760 genes ...

Long-sought mechanism of metastasis is discovered in pancreatic cancer

July 27, 2017
Cells, just like people, have memories. They retain molecular markers that at the beginning of their existence helped guide their development. Cells that become cancerous may be making use of these early memories to power ...

Blocking the back-door that cancer cells use to escape death by radiotherapy

July 27, 2017
A natural healing mechanism of the body may be reducing the efficiency of radiotherapy in breast cancer patients, according to a new study.

Manmade peptides reduce breast cancer's spread

July 27, 2017
Manmade peptides that directly disrupt the inner workings of a gene known to support cancer's spread significantly reduce metastasis in a mouse model of breast cancer, scientists say.

Glowing tumor technology helps surgeons remove hidden cancer cells

July 27, 2017
Surgeons were able to identify and remove a greater number of cancerous nodules from lung cancer patients when combining intraoperative molecular imaging (IMI) - through the use of a contrast agent that makes tumor cells ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.