Researchers untangle molecular pathology of giant axonal neuropathy

April 15, 2013

Giant axonal neuropathy (GAN) is a rare genetic disorder that causes central and peripheral nervous system dysfunction. GAN is known to be caused by mutations in the gigaxonin gene and is characterized by tangling and aggregation of neural projections, but the mechanistic link between the genetic mutation and the effects on neurons is unclear.

In this issue of the Journal of Clinical Investigation, Robert Goldman and colleagues at Northwestern University uncover how mutations in gigaxonin contribute to neural aggregation.They demonstrated that gigaxonin regulates the degradation of neurofilament proteins, which help to guide outgrowth and morphology of neural projections.

Loss of gigaxonin in either GAN patient cells or increased levels of neurofilament proteins, causing tangling and aggregation of neural projections. Importantly, expression of gigaxonin allowed for clearance of neurofilament proteins in neurons.

These findings demonstrate that mutations in gigaxonin cause accumulation of neurofilament proteins and shed light on the molecular pathology of GAN.

Explore further: Rare, lethal childhood disease tracked to failure to degrade nerve cells' filaments

More information: Giant axonal neuropathy–associated gigaxonin mutations impair intermediate filament protein degradation, J Clin Invest. doi:10.1172/JCI66387

Related Stories

Rare, lethal childhood disease tracked to failure to degrade nerve cells' filaments

December 17, 2012
For the first time, a defective protein that plays a specific role in degrading intermediate filaments (IF), one of three classes of filaments that form the structure of nerve cells, has been discovered by an international ...

A gut feeling about neural stem cells

February 1, 2013
Proper function of the digestive system requires coordinated contraction of the muscle in the wall of the intestinal tract, regulated by the enteric nervous system. Damage or loss of these neurons can result in intestinal ...

Growing up as a neural stem cell: The importance of clinging together and then letting go

April 25, 2012
Can one feel too attached? Does one need to let go to mature? Neural stem cells have this problem, too.

Recommended for you

Cognitive cross-training enhances learning, study finds

July 25, 2017
Just as athletes cross-train to improve physical skills, those wanting to enhance cognitive skills can benefit from multiple ways of exercising the brain, according to a comprehensive new study from University of Illinois ...

Lutein may counter cognitive aging, study finds

July 25, 2017
Spinach and kale are favorites of those looking to stay physically fit, but they also could keep consumers cognitively fit, according to a new study from University of Illinois researchers.

Zebrafish study reveals clues to healing spinal cord injuries

July 25, 2017
Fresh insights into how zebrafish repair their nerve connections could hold clues to new therapies for people with spinal cord injuries.

Brain stimulation may improve cognitive performance in people with schizophrenia

July 24, 2017
Brain stimulation could be used to treat cognitive deficits frequently associated with schizophrenia, according to a new study from King's College London.

New map may lead to drug development for complex brain disorders, researcher says

July 24, 2017
Just as parents are not the root of all their children's problems, a single gene mutation can't be blamed for complex brain disorders like autism, according to a Keck School of Medicine of USC neuroscientist.

Working around spinal injuries: Rehabilitation, drug treatment lets rats recover some involuntary movement

July 24, 2017
A new study in rats shows that changes in the brain after spinal cord injury are necessary to restore at least some function to lower limbs. The work was published recently in the journal eLife.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.