Rare, lethal childhood disease tracked to failure to degrade nerve cells' filaments

December 17, 2012, American Society for Cell Biology

For the first time, a defective protein that plays a specific role in degrading intermediate filaments (IF), one of three classes of filaments that form the structure of nerve cells, has been discovered by an international team of researchers.

The defective protein, gigaxonin, which was first identified in children with a rare and untreatable genetic disease called giant axonal neuropathy (GAN), according to Saleemulla Mahammad, PhD, of the Northwestern Feinberg School of Medicine in Chicago, who presented the data on Dec. 17 at the American Society for Cell Biology Annual Meeting in San Francisco.

The identification of gigaxonin's specific role explains why a failure in would lead to massive aggregations of IF in the neuronal cells of GAN children, said Dr. Mahammad who is in the laboratory of Robert D. Goldman, PhD, and collaborated with Puneet Opal, MD, PhD, at Northwestern along with researchers at in Montpelier, France and the Université Laval in Quebec, Canada.

The GAN gene was first identified in 2000 by Dr. Pascale Bomont, now at the French INSERM neurological institute in Montpellier, who reported that it encoded for the protein gigaxonin. Based on sequence homology, gigaxonin is involved in the normal turnover of proteins by the well-studied ubiquitin-proteasome system. But it wasn't clear why a failure in protein degradation would lead to massive aggregations of IF in a patient's .

Because it is not possible to study nerve cells experimentally from patients, Dr. Mahammad and collaborators instead used fibroblasts from skin biopsies of children with GAN because previous studies had revealed that other classes of IF are also altered in GAN patients. In particular, the IF vimentin expressed in fibroblasts of children with GAN also forms abnormally large aggregates. These cells can readily be obtained from skin biopsies and grown in .

When the researchers introduced the gigaxonin gene into both control and patient fibroblasts, the results were dramatic. In the cultured from GAN patients, the complex network of vimentin filaments and abnormal aggregates disappeared. The vimentin filaments in the control cells also disappeared following the overexpression of the gigaxonin protein. Boosting gigaxonin to higher levels in normal cultured nerve cells also led to a degradation of neuronal forms of IF. However, the cytoskeleton's two other major systems, microtubules and actin filaments, were not affected by this treatment.

These findings point to a central role for gigaxonin in regulating the normal turnover of IF proteins. When gigaxonin is defective, neurofilaments pile up, and eventually the aggregates disrupt the normal functioning of in GAN.

Gigaxonin is the first factor to be identified that plays a specific role in the degradation of several types of IF proteins, including neurofilaments, according to Dr. Mahammad. This discovery may have implications for more common types of neurodegenerative diseases that are also characterized by large accumulations of IF proteins, including Alzheimer's disease, Parkinson's disease, dementia with Lewy bodies, Charcot-Marie-Tooth (CMT) disease, neuronal intermediate filament inclusion disease (NIFID), and diabetic neuropathy.

GAN is an extremely rare genetic disorder that strikes at both the peripheral and central nervous systems of children. The leading GAN disease foundation, Hannah's Hope Fund, currently knows of 31 cases worldwide, 19 in the United States alone. But its rarity doesn't dull its severity in children affected by GAN. There are no symptoms at birth, but by age three the first signs of muscle weakness usually appear and progress slowly but steadily. With increasing difficulty in walking and coordinating hand movements, children with GAN are often wheelchair-bound by age 10. Over time, they become dependent on feeding and breathing tubes. A few will survive into young adulthood. The pathological markers for GAN are swollen (thus "giant") axons, filled with abnormal aggregates of neurofilaments, rich in Ifs.

Explore further: The tangled web in Alzheimer's protein deposits is more complex than once thought

More information: "Gigaxonin regulates the degradation of intermediate filament proteins: Insights into giant axonal neuropathy," Monday, Dec. 17, 2012, 12:30 − 2 pm, Session: Intermediate Filaments, presentation: 1290, poster: B575

Related Stories

The tangled web in Alzheimer's protein deposits is more complex than once thought

November 1, 2011
Scientists from the National Institutes of Health in the United States have made an important discovery that should forever change the scope and direction of Alzheimer's research. Specifically, they have discovered that the ...

Recommended for you

Secrets of longevity protein revealed in new study

January 17, 2018
Named after the Greek goddess who spun the thread of life, Klotho proteins play an important role in the regulation of longevity and metabolism. In a recent Yale-led study, researchers revealed the three-dimensional structure ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

The HLF gene protects blood stem cells by maintaining them in a resting state

January 17, 2018
The HLF gene is necessary for maintaining blood stem cells in a resting state, which is crucial for ensuring normal blood production. This has been shown by a new research study from Lund University in Sweden published in ...

Magnetically applied MicroRNAs could one day help relieve constipation

January 17, 2018
Constipation is an underestimated and debilitating medical issue related to the opioid epidemic. As a growing concern, researchers look to new tools to help patients with this side effect of opioid use and aging.

Researchers devise decoy molecule to block pain where it starts

January 16, 2018
For anyone who has accidentally injured themselves, Dr. Zachary Campbell not only sympathizes, he's developing new ways to blunt pain.

Scientists unleash power of genetic data to identify disease risk

January 16, 2018
Massive banks of genetic information are being harnessed to shed new light on modifiable health risks that underlie common diseases.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.