Neuroscientists discover new phase of synaptic development

May 29, 2013

Students preparing for final exams might want to wait before pulling an all-night cram session—at least as far as their neurons are concerned. Carnegie Mellon University neuroscientists have discovered a new intermediate phase in neuronal development during which repeated exposure to a stimulus shrinks synapses. The findings are published in the May 8 issue of the Journal of Neuroscience.

It's well known that synapses in the brain, the connections between neurons and other cells that allow for the transmission of information, grow when they're exposed to a stimulus. New research from the lab of Carnegie Mellon Associate Professor of Biological Sciences Alison L. Barth has shown that in the short term, synapses get even stronger than previously thought, but then quickly go through a transitional phase where they weaken.

"When you think of learning, you think that it's cumulative. We thought that synapses started small and then got bigger and bigger. This isn't the case," said Barth, who also is a member of the joint Carnegie Mellon/University of Pittsburgh Center for the of Cognition. "Based on our data, it seems like synapses that have recently been strengthened are peculiarly vulnerable—more stimulation can actually wipe out the effects of learning.

"Psychologists know that for long-lasting memory, spaced training - like studying for your classes after very lecture, all semester long—is superior to cramming all night before the exam," Barth said. "This study shows why. Right after plasticity, synapses are almost fragile—more training during this labile phases is actually counterproductive."

Previous research from Barth's lab established the responsible for the strengthening of synapses in the , the part of the brain responsible for thought and language, but only measured the synapses after 24 hours. In the current study, post-doctoral student Jing A. Wen investigated how the synapses developed throughout the first 24 hours of exposure to a stimulus using a specialized transgenic mouse model created by Barth. The model senses its surroundings using only one whisker, which alters its ability to sense its environment and creates a sensory imbalance that increases plasticity in the brain. Since each whisker is linked to a specific area of the cortex, researchers can easily track neuronal changes.

Wen found that during this first day of learning, synapses go through three distinct phases. In the initiation phase, synaptic plasticity is spurred on by NMDA receptors. Over the next 12 hours or so, the synapses get stronger and stronger. As the stimulus is repeated, the NDMA receptors change their function and start to weaken the synapses in what the researchers have called the labile phase. After a few hours of weakening, another receptor, mGluR5, initiates a stabilization phase during which the maintain their residual strength.

Furthermore, the researchers found that they could maintain the super-activated state found at the beginning of the labile phase by stopping the stimulus altogether or by injecting a glutamate receptor antagonist drug at an optimal time point. The findings are analogous to those seen in many psychological studies that use space training to improve memory.

"While synaptic changes can be long lasting, we've found that in this initial period there are a number of different things we could play with," Barth said. "The discovery of this labile phase suggests there are ways to control learning through the manipulation of the biochemical pathways that maintain memory."

Explore further: Researchers uncover steps in synapse building, pruning

Related Stories

Researchers uncover steps in synapse building, pruning

November 16, 2011
Like a gardener who stakes some plants and weeds out others, the brain is constantly building networks of synapses, while pruning out redundant or unneeded synapses. Researchers at The Jackson Laboratory led by Assistant ...

Rewriting a receptor's role: Synaptic molecule works differently than thought

February 19, 2013
(Medical Xpress)—In a pair of new papers, researchers at the University of California, San Diego School of Medicine and the Royal Netherlands Academy of Arts and Sciences upend a long-held view about the basic functioning ...

Newly found 'volume control' in the brain promotes learning, memory

January 9, 2013
Scientists have long wondered how nerve cell activity in the brain's hippocampus, the epicenter for learning and memory, is controlled—too much synaptic communication between neurons can trigger a seizure, and too little ...

Alzheimer's disease is associated with removal of the synaptic protein ADAM10

May 8, 2013
Alzheimer's disease is characterized by the accumulation of neurotoxic β-amyloid peptide (A-beta). ADAM10, a protein that resides in the neural synapses, has previously been shown to prevent the formation of A-beta.

Researchers provide definitive proof for receptor's role in synapse development

December 31, 2012
Jackson Laboratory researchers led by Associate Professor Zhong-wei Zhang, Ph.D., have provided direct evidence that a specific neurotransmitter receptor is vital to the process of pruning synapses in the brains of newborn ...

Finding the way to memory: Guidance proteins regulate brain plasticity

February 4, 2013
Our ability to learn and form new memories is fully dependent on the brain's ability to be plastic – that is to change and adapt according to new experiences and environments. A new study from the Montreal Neurological ...

Recommended for you

Study uncovers specialized mouse neurons that play a unique role in pain

August 17, 2017
Researchers from the National Institutes of Health have identified a class of sensory neurons (nerve cells that electrically send and receive messages between the body and brain) that can be activated by stimuli as precise ...

Scientists discover powerful potential pain reliever

August 16, 2017
A team of scientists led by chemists Stephen Martin and James Sahn at The University of Texas at Austin have discovered what they say is a powerful pain reliever that acts on a previously unknown pain pathway. The synthetic ...

Scientists use magnetic fields to remotely stimulate brain—and control body movements

August 16, 2017
Scientists have used magnetism to activate tiny groups of cells in the brain, inducing bodily movements that include running, rotating and losing control of the extremities—an achievement that could lead to advances in ...

Scientists give star treatment to lesser-known cells crucial for brain development

August 16, 2017
After decades of relative neglect, star-shaped brain cells called astrocytes are finally getting their due. To gather insight into a critical aspect of brain development, a team of scientists examined the maturation of astrocytes ...

The nerve-guiding 'labels' that may one day help re-establish broken nervous connections

August 16, 2017
Scientists have identified a large group of biological 'labels' that guide nerves to ensure they make the correct connections and control different parts of the body. Although their research was conducted with fruit flies, ...

Navigation and spatial memory—new brain region identified to be involved

August 16, 2017
Navigation in mammals including humans and rodents depends on specialized neural networks that encode the animal's location and trajectory in the environment, serving essentially as a GPS, findings that led to the 2014 Nobel ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.