Device aims to avert repeated breast cancer surgeries

June 25, 2013, Johns Hopkins University
The students' device applies an adhesive film to the breast tissue before it is sliced for examination. The film prevents damage to the samples. Credit: Will Kirk/JHU

When a breast tumor is detected, many women opt to have a lumpectomy, which is surgery designed to remove the diseased tissue while preserving the breast. But during this procedure, doctors cannot learn right away whether all of the cancerous tissue has been removed, with no microscopic signs that cancer cells were left behind. Because of this delay, one in five of these women—up to 66,000 patients annually in the U.S. alone—must return for a second surgery to remove remaining cancer. These follow-up operations boost healthcare costs and can lead to delays in receiving other treatments such as radiation and chemotherapy.

To reduce the need for these second surgeries, four Johns Hopkins graduate students have designed a device to allow pathologists to quickly inspect excised breast tissue within 20 minutes, while the patient is still in the operating room. If this inspection indicates that the tumor was not fully removed, additional tissue can then be removed during the same operation. Eliminating the need for a second operation could also curb some of the additional anxiety these patients face.

The device is still in its prototype stage, but the students say their goal is to give the same rapid review that commonly occurs when tumors are removed from elsewhere in the body. The students learned about the second-surgery dilemma while observing last summer as part of a year-long biomedical engineering master's degree program. In this program, students learn to design new medical tools and products that address urgent healthcare needs.

"We spoke to breast cancer surgeons," said Hector Neira of Silver Spring, Md., one of the student inventors. "They told us that they are desperate for something that will allow them to remove the tumor in its entirety the first time, so that the patient doesn't have to come back for a second surgery."

So far, the team's system has been tested on and human breast samples from a tissue bank, but it has not yet been used on patients. Over the past year, however, the students' device design and market analysis have earned them more than $40,000 in college business plan prize money. In the recent Design Day event for Johns Hopkins biomedical engineering students, the team received the top People's Choice award. And, although all of the student inventors received their master's diplomas in May, two have received funding to remain at Johns Hopkins and continue refining the project over the coming year.

Although the financial support and recognition is helpful, "that's not our ultimate goal," said Anjana Sinha of Princeton, N.J., another one of the student inventors. "We're not doing it for the money. We want to improve healthcare practices and raise the standard of care for these breast cancer patients. Why can't they get the same type of quick results that people with other types of cancer receive?"

When most tumors, such as those in the liver, are removed, the pathology staff can quickly flash-freeze the tissue and slice off paper-thin samples for microscopic examination. If the pathologist sees that cancer cells extend to the outer edge or margin of a sample, the surgeon is advised to remove more tissue from the patient. But breast tissue poses a problem: it possesses a high fat content and does not freeze well, causing the samples to smear, form gaps and become unsuitable for a quick review. Instead, breast tissue must be preserved and analyzed in a more time-consuming process that requires the patient to return to the if the first surgery appears to have left behind.

To solve this problem, the graduate students brainstormed for an engineering solution. Their most promising and practical idea was a device that applies an adhesive film to the before it is sliced. The film holds the delicate tissue together, preventing damage to the samples during the slicing process. The result, the students said, is a sample that can be clearly reviewed by a pathologist within 20 minutes of its removal, potentially eliminating the need for a second operation on another day.

The low-cost system includes a reusable applicator and a proprietary disposable film. The students said the need for their product is significant, citing the estimated 330,000 lumpectomies that are performed annually in the United States alone.

"I think the students have been incredibly creative in their development of this concept, and they are addressing a very real need in the field of breast cancer surgery," said Melissa Camp, a Johns Hopkins assistant professor of surgery who worked with the team. "Accurate assessment of margin status during the initial operation will lead to fewer re-operations, and this will be beneficial for patients in many respects. I look forward to their continued work!"

At Johns Hopkins, the pathology device was developed under the supervision of the university's Center for Bioengineering Innovation and Design. The center teams students with faculty researchers, physicians and others who help them understand healthcare needs and guide them as they propose solutions, then build and test prototypes. CBID operates within the Department of Biomedical Engineering, which is shared by the university's School of Medicine and its Whiting School of Engineering.

Along with Neira and Sinha, the student inventors of the device were Qing Xiang Yee of Singapore and Vaishakhi Mayya of India. Sinha and Mayya will remain at Johns Hopkins during the coming year to continue working on the project with David Shin of Seattle, another recent graduate of the CBID master's program. The students also will continue collaborating with advisers from the School of Medicine, including Ashley Cimino-Mathews, an assistant professor of surgical pathology, and James Shin, a surgical pathology research specialist. Jason Benkoski, a senior materials scientist from the Johns Hopkins Applied Physics Laboratory, will serve as a technical adviser to the team. The Wallace H. Coulter Foundation is providing funding for these students to continue working on the project this year.

Explore further: New technology makes breast cancer surgery more precise

Related Stories

New technology makes breast cancer surgery more precise

May 31, 2013
(Medical Xpress)—Any breast cancer surgeon who regularly performs lumpectomies confronts the question "Did I get it all?" Thirty to 60 percent of the time in the U.S., the answer is "no," requiring the patient to undergo ...

Rural women less likely to get radiation therapy after lumpectomy for breast cancer

June 24, 2013
Rural women with breast cancer are less likely than their urban counterparts to receive recommended radiation therapy after having a lumpectomy, a breast-sparing surgery that removes only tumors and surrounding tissue, a ...

New device may reduce repeat breast cancer surgeries

September 12, 2012
(HealthDay)—A new device meant to help surgeons determine in the operating room if they have removed all cancerous breast cancer tissue may help reduce repeat surgeries after lumpectomy without compromising cosmetic effects, ...

Fewer women need repeat breast cancer surgeries with new service at University of Michigan

February 28, 2012
Nearly one in three women who have breast cancer surgery will need to return to the operating room for additional surgery after the tumor is evaluated by a pathologist.

Could FastStitch device be the future of suture?

August 16, 2012
After a surgeon stitches up a patient's abdomen, costly complications -- some life-threatening -- can occur. To cut down on these postoperative problems, Johns Hopkins undergraduates have invented a disposable suturing tool ...

Young breast cancer patients often opt for mastectomy

May 30, 2013
A new study of young women with breast cancer has found that most chose to have a mastectomy rather than a surgical procedure that would conserve the breast, researchers will report at the 49th Annual Meeting of the American ...

Recommended for you

T-cells engineered to outsmart tumors induce clinical responses in relapsed Hodgkin lymphoma

January 16, 2018
WASHINGTON-(Jan. 16, 2018)-Tumors have come up with ingenious strategies that enable them to evade detection and destruction by the immune system. So, a research team that includes Children's National Health System clinician-researchers ...

Researchers identify new treatment target for melanoma

January 16, 2018
Researchers in the Perelman School of Medicine at the University of Pennsylvania have identified a new therapeutic target for the treatment of melanoma. For decades, research has associated female sex and a history of previous ...

More evidence of link between severe gum disease and cancer risk

January 16, 2018
Data collected during a long-term health study provides additional evidence for a link between increased risk of cancer in individuals with advanced gum disease, according to a new collaborative study led by epidemiologists ...

Researchers develop a remote-controlled cancer immunotherapy system

January 15, 2018
A team of researchers has developed an ultrasound-based system that can non-invasively and remotely control genetic processes in live immune T cells so that they recognize and kill cancer cells.

Dietary fat, changes in fat metabolism may promote prostate cancer metastasis

January 15, 2018
Prostate tumors tend to be what scientists call "indolent" - so slow-growing and self-contained that many affected men die with prostate cancer, not of it. But for the percentage of men whose prostate tumors metastasize, ...

Pancreatic tumors may require a one-two-three punch

January 15, 2018
One of the many difficult things about pancreatic cancer is that tumors are resistant to most treatments because of their unique density and cell composition. However, in a new Wilmot Cancer Institute study, scientists discovered ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.