Renewed hope in a once-abandoned cancer drug class

June 19, 2013, American Chemical Society

Could drugs that block the body's system for repairing damage to the genetic material DNA become a boon to health? As unlikely as it may seem, those compounds are sparking optimism as potential treatments for ovarian and breast cancers driven by a mutation in BRCA, a gene that made headlines when actress Angelina Jolie revealed she carries the mutation. The compounds, termed PARP inhibitors, are the topic of the cover story in the current edition of Chemical & Engineering News. C&EN is the weekly newsmagazine of the American Chemical Society, the world's largest scientific society.

Lisa Jarvis, C&EN senior editor, explains that some members of the family of enzymes known as PARP, which stands for poly(ADP-ribose) polymerase, help fix damaged DNA. When DNA is broken, PARP moves in and signals other enzymes to repair the break so the cell can live. As early as the 1980s, scientists looked seriously at stopping PARP from working in cancer cells. If they could damage cancer cells' DNA with chemotherapy and then block PARP from fixing it, the cancer cells would die. By the 2000s, scientists identified BRCA-positive cancer patients, whose cells' ability to repair double-stranded damage is already compromised, as good candidates for treatment with PARP inhibitors.

The story describes how PARP inhibitors held great promise. But a couple of years ago, momentum came to a screeching halt when one candidate, which had advanced to a Phase III clinical trial, failed to prolong patients' survival. More recently, researchers realized that the drug was not a PARP inhibitor. Soon after, an in-depth look at a previous study showed that a different drug candidate did in fact help some ovarian cancer patients. The findings breathed new life into PARP inhibitor research. Now, four drug candidates in this family are ready to enter Phase III clinical studies for breast and ovarian cancer.

Explore further: 'Cell' article reveals new resistance mechanism to chemotherapy in breast and ovarian cancer

More information: Pushing Cancer over the Edge, Chemical & Engineering News. cen.acs.org/articles/91/i24/Pu … ancer-Over-Edge.html

Related Stories

'Cell' article reveals new resistance mechanism to chemotherapy in breast and ovarian cancer

June 18, 2013
It is estimated that between 5% and 10% of breast and ovarian cancers are familial in origin, which is to say that these tumours are attributable to inherited mutations from the parents in genes such as BRCA1 or BRCA2. In ...

New cancer drug shows potential in patients with BRCA mutations

June 6, 2013
(Medical Xpress)—A new cancer drug designed to be effective in tumours with faulty BRCA genes has generated impressive responses in an early-stage clinical trial.

New mechanism of action for PARP inhibitors discovered

November 9, 2012
New understanding of how drugs called PARP inhibitors, which have already shown promise for the treatment of women with familial breast and ovarian cancers linked to BRCA mutations, exert their anticancer effects has led ...

PARP inhibitors may have clinical utility in HER2-positive breast cancers

September 17, 2012
Poly (ADP-Ribose) polymerase (PARP) inhibitors, shown to have clinical activity when used alone in women with familial breast and ovarian cancers linked to BRCA mutations, may be a novel treatment strategy in women with HER2-positive ...

Breakthrough could make 'smart drugs' effective for many cancer patients

June 27, 2011
(Medical Xpress) -- Newcastle and Harvard University reseachers have found that blocking a key component of the DNA repair process could extend the use of a new range of 'smart' cancer drugs called PARP inhibitors.

Cisplatin-resistant cancer cells sensitive to experimental anticancer drugs, PARP inhibitors

April 3, 2013
Poly (ADP-ribose) polymerase inhibitors may be a novel treatment strategy for patients with cancer that has become resistant to the commonly used chemotherapy drug cisplatin, according to data from a preclinical study published ...

Recommended for you

Study: Cells of three advanced cancers die with drug-like compounds that reverse chemo failure

January 23, 2018
Researchers at Southern Methodist University have discovered three drug-like compounds that successfully reverse chemotherapy failure in three of the most commonly aggressive cancers—ovarian, prostate and breast.

'Hijacker' drives cancer in some patients with high-risk neuroblastoma

January 23, 2018
Researchers have identified mechanisms that drive about 10 percent of high-risk neuroblastoma cases and have used a new approach to show how the cancer genome "hijacks" DNA that regulates other genes. The resulting insights ...

Enzyme inhibitor combined with chemotherapy delays glioblastoma growth

January 23, 2018
In animal experiments, a human-derived glioblastoma significantly regressed when treated with the combination of an experimental enzyme inhibitor and the standard glioblastoma chemotherapy drug, temozolomide.

Scientists block the siren call of two aggressive cancers

January 23, 2018
Aggressive cancers like glioblastoma and metastatic breast cancer have in common a siren call that beckons the bone marrow to send along whatever the tumors need to survive and thrive.

Researchers identify a protein that keeps metastatic breast cancer cells dormant

January 23, 2018
A study headed by ICREA researcher Roger Gomis at the Institute for Research in Biomedicine (IRB Barcelona) has identified the genes involved in the latent asymptomatic state of breast cancer metastases. The work sheds light ...

Boosting cancer therapy with cross-dressed immune cells

January 22, 2018
Researchers at EPFL have created artificial molecules that can help the immune system to recognize and attack cancer tumors. The study is published in Nature Methods.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.