Protecting the body in good times and bad

July 16, 2013, Brandeis University

The nasty side effects of radiation and chemotherapy are well known: fatigue, hair loss and nausea, to name a few. Cancer treatment can seem as harsh as the disease because it can't differentiate healthy cells from cancerous cells, killing both.

But what if there were a way to control or stop the growth of without harming other cells?

Brandeis biologist Michael T. Marr is one step closer to understanding how cells promote and inhibit —an essential part of cellular reproduction—during times of stress. His new paper, co-authored by graduate students Calla Olson, Marissa Donovan and Michael Spellberg, is published in eLife, an open access for life science and biomedicine research.

Marr and his team discovered a mechanism, like an emergency backup system, that allows cells to synthesize certain proteins while shutting down the production of others. Building proteins requires a chain reaction with a dozen moving parts, each triggering the next step. These chain reactions are called signaling pathways.

The pathway that interests Marr and his team is called the insulin and insulin-like receptor (IIS) pathway. It is part of the body's emergency response system. When organisms are healthy and safe, the IIS pathway increases the activity of a protein complex called eIF4A, which helps in the synthesis of proteins.

But let's say you're not safe. You're starving. Your body is being deprived of nutrients, forcing you to conserve energy and resources. The IIS pathway, sensitive to this stress, realizes something isn't right, and sends a signal to stop eIF4A.

Protein synthesis screeches to a halt—for the most part.

Marr and his team discovered that the messages that build insulin have internal mechanisms allowing them to synthesize protein without the eIF4A kick-start. When the rest of the production line slows down, production of in the IIS ramps up. Why?

The hope is you're about to find food. The insulin receptors help the IIS pathway recognize when it's out of danger. The more receptors, the faster the IIS pathway can start ramping up protein production again. The same principle applies on the cellular level when overwhelm healthy cells, starving them of oxygen and nutrients—the healthy cells continue to produce insulin receptors.

"Even during times of stress, cells are stockpiling for good times," says Marr.

The mechanism that allows synthesis of insulin receptors during stress is the same from flies to mammals, pointing to a response conserved in evolution, Marr says.

Though this research is still early, the more deeply scientists understand mechanisms involved in growth and inhibition, the better they can decipher diseases that rely on uncontrolled cell growth, like cancer.

Explore further: Researchers discover new proteasome regulatory mechanism

Related Stories

Researchers discover new proteasome regulatory mechanism

July 1, 2013
Dysfunction of the ubiquitin-proteasome system (UPS) has been detected in many neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases, and certain types of cancer. Such dysfunction is also believed to be ...

Scientists develop ground-breaking new method of 'starving' cancer cells

July 10, 2013
A University of Southampton Professor, in collaboration with colleagues at the BC Cancer Agency Research Centre, have discovered a novel way of killing cancer cells. The research, recently published in the journal Cell, has ...

Protein may play role in obesity, diabetes, aging

February 15, 2012
(Medical Xpress) -- Researchers at Washington University School of Medicine in St. Louis have identified a potent regulator of sensitivity to insulin, the hormone that controls blood sugar levels. The new findings may help ...

Hippo pathway to better cancer treatment?

July 11, 2013
Researchers at the University of British Columbia have discovered a potential new pathway to treat cancer by asking some odd questions about the size of animals.

Gene variant may provide novel therapy for several cancer types

June 7, 2013
(Medical Xpress)—A novel gene variant found in human and animal tissue may be a promising treatment for cancer, including breast and brain cancer, according to scientists from the Icahn School of Medicine at Mount Sinai. ...

Recommended for you

Magnetically applied MicroRNAs could one day help relieve constipation

January 17, 2018
Constipation is an underestimated and debilitating medical issue related to the opioid epidemic. As a growing concern, researchers look to new tools to help patients with this side effect of opioid use and aging.

Researchers devise decoy molecule to block pain where it starts

January 16, 2018
For anyone who has accidentally injured themselves, Dr. Zachary Campbell not only sympathizes, he's developing new ways to blunt pain.

Scientists unleash power of genetic data to identify disease risk

January 16, 2018
Massive banks of genetic information are being harnessed to shed new light on modifiable health risks that underlie common diseases.

Blood-vessel-on-a-chip provides insight into new anti-inflammatory drug candidate

January 15, 2018
One of the most important and fraught processes in the human body is inflammation. Inflammatory responses to injury or disease are crucial for recruiting the immune system to help the body heal, but inflammation can also ...

Molecule produced by fat cells reduces obesity and diabetes in mice

January 15, 2018
UC San Francisco researchers have discovered a new biological pathway in fat cells that could explain why some people with obesity are at high risk for metabolic diseases such as type 2 diabetes. The new findings—demonstrated ...

Obese fat becomes inflamed and scarred, which may make weight loss harder

January 12, 2018
The fat of obese people becomes distressed, scarred and inflamed, which can make weight loss more difficult, research at the University of Exeter has found.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.