Tumor-suppressor protein gives up its secrets, promises new targets for cancer drug design

July 9, 2013, Johns Hopkins University School of Medicine
PTEN is shown in its active (above) and inactive (below) forms. Phosphate tags (red) on PTEN's tail cause a shape change, which prevents PTEN from binding to the cell's outer envelope (blue) and removing a phosphate from PIP3 (yellow). Credit: David Bolduc

Genetic mutations aren't the only thing that can keep a protein called PTEN from doing its tumor-suppressing job. Johns Hopkins researchers have now discovered that four small chemical tags attached (reversibly) to the protein's tail can have the same effect, and they say their finding may offer a novel path for drug design to keep PTEN working.

In a report published on July 9 in the journal eLife, the Johns Hopkins scientists describe how a cluster of four phosphate groups, first found 13 years ago to bind to PTEN's tail, controls its activity.

"Now that we know how these phosphate tags are involved in regulating PTEN's activity, new options may be available for drugs that interfere with them," says Philip A. Cole, M.D., Ph.D., the E.K. Marshall and Thomas H. Maren Professor and director of the Department of Pharmacology and Molecular Sciences at the Johns Hopkins University School of Medicine.

In addition to phosphate tags, mutations in genes that code for a can cause some protein activities to be permanently on or off. Mutations that deactivate PTEN often lead to cancer because PTEN's job is to prevent cells from dividing too much, Cole notes. But there are times when a cell needs to divide to replace , so scientists knew there had to be a naturally occurring mechanism for turning PTEN off, and they hypothesized that the phosphates on its tail were responsible, as they are in other proteins.

To get at the heart of the question, the Johns Hopkins team had to overcome technical obstacles, including a way to engineer a special version of PTEN in which the phosphates were permanently bound to the tail.

"We had to synthesize the tail of PTEN in the lab and then fit that together with the rest of PTEN, which was made by ," says David Bolduc, a graduate student in Cole's laboratory and the lead author of the paper. "Once we cleared that hurdle, we were able to learn a lot more about how phosphates regulate PTEN."

Armed with their engineered protein, the team analyzed its shape, where in cells it was located and its activity—tasks aided by miniature X-ray imagers and biochemical tests that shed light on how PTEN interacted with other entities, like PIP3, a fat-like molecule located just inside the outer envelope of cells.

The team found that when there are no phosphates on PTEN's tail, it is in its active form and it removes a phosphate tag from PIP3. The loss of the phosphate alters PIP3's activity and causes a chain reaction of effects on other important regulatory proteins that ultimately suppresses cell division and migration, both deadly aspects of tumor progression.

Cole explains that when a cell needs to divide, another protein, most often CK2, adds phosphates to PTEN's tail, causing a change in its shape and location. Its tail curls back on the rest of the protein and prevents it from interacting with PIP3 in the outer envelope of the cell, so PTEN ends up inactive, in the fluid-filled middle of the cell. When the phosphates are removed, PTEN relocates to the outer envelope, where it removes a phosphate tag from PIP3 to initiate the chain reaction that suppresses tumor formation.

"The tail of PTEN actually has a competition going on between binding to itself and binding to the outer envelope of the cell where PIP3 is located," explains Bolduc. "Any drug that can prevent the tail from binding itself might also maintain the tumor-fighting activity of PTEN."

According to Cole, many cancer patients have an overabundance of CK2, the protein that adds to PTEN and turns it off. So, increasing the activity of PTEN might be helpful not only to patients with defective PTEN, but also to those with cancer-causing mutations in other proteins.

Explore further: Gene variant may provide novel therapy for several cancer types

More information: dx.doi.org/10.7554/elife.00691

Related Stories

Gene variant may provide novel therapy for several cancer types

June 7, 2013
(Medical Xpress)—A novel gene variant found in human and animal tissue may be a promising treatment for cancer, including breast and brain cancer, according to scientists from the Icahn School of Medicine at Mount Sinai. ...

Targeting PTEN may prevent skin cancer

July 26, 2011
Scientists believe they have identified a role for PTEN, a known tumor suppressor, in removing DNA damage derived from UVB radiation, a known risk factor for non-melanoma skin cancer, according to a study published in Cancer ...

Cleveland Clinic researcher discovers genetic cause of thyroid cancer

December 23, 2011
Cleveland Clinic researchers have discovered three genes that increase the risk of thyroid cancer, which is has the largest incidence increase in cancers among both men and women.

Researchers uncover new operations of cancer suppressor

February 24, 2012
(Medical Xpress) -- Scientists at the University of Dundee studying an important tumour suppressor, which is involved in at least a quarter of all cancers, have uncovered new ways in which it works.

Recommended for you

Standard chemotherapy treatment for HPV-positive throat cancer remains the most effective, study finds

November 15, 2018
A new study funded by Cancer Research UK and led by the University of Birmingham has found that the standard chemotherapy used to treat a specific type of throat cancer remains the most effective.

New 'SLICE' tool can massively expand immune system's cancer-fighting repertoire

November 15, 2018
Immunotherapy can cure some cancers that until fairly recently were considered fatal. In addition to developing drugs that boost the immune system's cancer-fighting abilities, scientists are becoming expert at manipulating ...

Anti-malaria drugs have shown promise in treating cancer, and now researchers know why

November 15, 2018
Anti-malaria drugs known as chloroquines have been repurposed to treat cancer for decades, but until now no one knew exactly what the chloroquines were targeting when they attack a tumor. Now, researchers from the Abramson ...

Researchers identify a mechanism that fuels cancer cells' growth

November 14, 2018
Scientists at the UCLA Jonsson Comprehensive Cancer Center have identified sodium glucose transporter 2, or SGLT2, as a mechanism that lung cancer cells can utilize to obtain glucose, which is key to their survival and promotes ...

A new approach to detecting cancer earlier from blood tests: study

November 14, 2018
Cancer scientists led by principal investigator Dr. Daniel De Carvalho at Princess Margaret Cancer Centre have combined "liquid biopsy", epigenetic alterations and machine learning to develop a blood test to detect and classify ...

New antibody breakthrough to lead the fight against cancer

November 14, 2018
Scientists at the University of Southampton have developed a new antibody that could hold the key to unlocking cancer's defence against the body's immune system.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.