Targeting aggressive prostate cancer

August 14, 2013

A team of researchers from UC Davis, UC San Diego and other institutions has identified a key mechanism behind aggressive prostate cancer. Published on August 14, 2013 in Nature, the study shows that two long non-coding RNAs (PRNCR1 and PCGEM1) activate androgen receptors, circumventing androgen-deprivation therapy. In their active state, these receptors turn on genes that spur growth and metastasis, making these cancers highly treatment-resistant. The study illustrates how prostate cancer can thrive, even when deprived of hormones, and provides tempting targets for new therapies.

"Androgen-deprivation therapy will often put cancer in remission, but tumors come back, even without testosterone," said contributor Christopher Evans, professor and chair of the Department of Urology at the UC Davis School of Medicine. "We found that these long non-coding RNAs were activating the androgen receptor. When we knocked them out, cancer growth decreased in both cell lines and tumors in animals."

Evans' UC Davis group was part of a larger team, led by Michael Geoff Rosenfeld, professor at the Howard Hughes Medical Institute in the School of Medicine at UC San Diego, which has been eager to determine how androgen-dependent cancers become androgen-independent (also called castration-resistant). These prostate cancers are very aggressive and usually fatal, but their continued growth, despite being deprived of hormones, is just now being better understood. It's not unlike removing the key from a car ignition, only to have the vehicle re-start on its own.

In this case, the aberrant starting mechanisms are long non-coding RNAs, a class of genetic material that regulates but does not code for proteins. Using patient samples from UC Davis, the group determined that both PRNCR1 and PCGEM1 are highly expressed in . These RNAs bind to androgen receptors and activate them in the absence of testosterone, turning on as many as 617 genes.

Further investigation determined that one of these long non-coding RNAs is turning on androgen receptors by an alternate switching mechanism, like a car with a second ignition. This is critically important because many prostate cancer treatments work by blocking a part of the androgen receptor called the C-terminus. However, PCGEM1 activates another part of the receptor, called the N-terminus, which also turns on genes—with bad results.

"The androgen receptor is unique, if you knock out the C-terminus, that remaining part still has the ability to transcribe genes," said Evans.

In addition, about 25 percent of these cancers have a mutated version of the that has no C-terminus. These receptors are locked in the "on" position, activating genes associated with tumor aggression.

Regardless of the receptor's status, PRNCR1 and PCGEM1 are crucial to prostate cancer growth. In turn, knocking out these RNAs has a profound impact on gene expression, both in cell lines and animal models. The team used complementary , called antisense, to knock out the RNAs and observe how the tumors and cells responded. In each case, there was a direct relationship between RNA activity, gene expression and cancer growth.

"These long non-coding RNAs are a required component for these castration-resistant cancers to keep growing," said Evans. "Now we have preclinical proof of principle that if we knock them out, we decrease ."

The research team's next step is developing treatments that specifically target these long non-coding RNAs. That process has already begun.

"Most treatments for castration-resistant will get us around two to three years of survival," said Evans. "We rarely cure these patients. The tumor will continue to evolve resistance mechanisms. But now that we have additional insight into what's activating these receptors, we can begin developing new types of therapies to prevent it."

Explore further: New medication treats drug-resistant prostate cancer in the laboratory

Related Stories

New medication treats drug-resistant prostate cancer in the laboratory

June 17, 2013
A new drug called pyrvinium pamoate inhibits aggressive forms of prostate cancer that are resistant to standard drugs, according to a study conducted in an animal model. The results will be presented Monday at The Endocrine ...

How some prostate tumors resist treatment—and how it might be fixed

March 18, 2013
Hormonal therapies can help control advanced prostate cancer for a time. However, for most men, at some point their prostate cancer eventually stops responding to further hormonal treatment. This stage of the disease is called ...

Researchers uncover how a potent compound kills prostate cancer cells

July 30, 2013
One major hallmark of cancer cells is their ability to survive under stressful conditions. A new study spearheaded by researchers at Sanford-Burnham Medical Research Institute reveals how a promising anticancer compound called ...

Researchers find new culprit in castration-resistant prostate cancer

December 13, 2012
Scientists at Dana-Farber Cancer Institute have discovered a molecular switch that enables advanced prostate cancers to spread without stimulation by male hormones, which normally are needed to spur the cancer's growth. They ...

Researchers identify novel class of drugs for prostate cancers

May 28, 2013
A new study on prostate cancer describes a novel class of drugs developed by UT Southwestern Medical Center researchers that interrupts critical signaling needed for prostate cancer cells to grow.

Noninvasive assay monitored treatment response in patients with metastatic prostate cancer

October 23, 2012
Deciding the ideal treatment for patients with metastatic prostate cancer that stops responding to initial therapy could be guided by certain analyses of cancer cells isolated from the patients' blood, according to data published ...

Recommended for you

Study may explain failure of retinoic acid trials against breast cancer

July 25, 2017
Estrogen-positive breast cancers are often treated with anti-estrogen therapies. But about half of these cancers contain a subpopulation of cells marked by the protein cytokeratin 5 (CK5), which resists treatment—and breast ...

Physical activity could combat fatigue, cognitive decline in cancer survivors

July 25, 2017
A new study indicates that cancer patients and survivors have a ready weapon against fatigue and "chemo brain": a brisk walk.

Breaking the genetic resistance of lung cancer and melanoma

July 25, 2017
Researchers from Monash University and the Memorial Sloan Kettering Cancer Center (MSKCC, New York) have discovered why some cancers – particularly lung cancer and melanoma – are able to quickly develop deadly resistance ...

New therapeutic approach for difficult-to-treat subtype of ovarian cancer identified

July 24, 2017
A potential new therapeutic strategy for a difficult-to-treat form of ovarian cancer has been discovered by Wistar scientists. The findings were published online in Nature Cell Biology.

Immune cells the missing ingredient in new bladder cancer treatment

July 24, 2017
New research offers a possible explanation for why a new type of cancer treatment hasn't been working as expected against bladder cancer.

Anti-cancer chemotherapeutic agent inhibits glioblastoma growth and radiation resistance

July 24, 2017
Glioblastoma is a primary brain tumor with dismal survival rates, even after treatment with surgery, chemotherapy and radiation. A small subpopulation of tumor cells—glioma stem cells—is responsible for glioblastoma's ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.