How a cancer drug unties knots in the chromosome that causes Angelman and Prader-Willi syndromes

August 5, 2013

UC Davis researchers have identified how and where in the genome a cancer chemotherapy agent acts on and 'un-silences' the epigenetically silenced gene that causes Angelman syndrome, a rare neurodevelopmental disorder characterized by severe intellectual disability, seizures, motor impairments, and laughing and smiling.

The agent, Topotecan, is a topoisomerase inhibitor, part of a class of drugs that in earlier research has been found to un-silence the Angelman gene, suggesting that it might be therapeutic for the condition, which affects approximately 1 in 25,000, or approximately 150,000 people worldwide. But how it acts has not been known.

Topotecan is primarily used to treat , including ovarian cancer, cervical cancer and small-cell lung cancer, by preventing cells from dividing and causing their death.

The research, published online today in Proceedings of the National Academy of Sciences (PNAS), found that the drug stabilizes the formation of strands of RNA that create RNA-DNA hybrids called 'R-loops,' in the Ube3a region of the gene15q11-q13. The gene is implicated in other , including autism. About 1 percent of cases of autism are linked to duplications in 15q11-q13 or "Dup15q," children that over-express Ube3a.

"Now we have a molecular mechanism for a proposed drug for a disease, so we can understand how it works and begin to tweak it to develop therapies," said lead study author Weston Powell, a third-year medical student in the Physician Scientist Training Program in the UC Davis School of Medicine.

Angelman syndrome is caused by the loss of a maternally inherited Ube3a gene at the 15q11-q13 locus, which is expressed in brain neurons. Loss of the same chromosomal region inherited from the male parent causes another neurodevelopmental condition, Prader-Willi syndrome, best known for its sufferers' obsessive-compulsive behavior and insatiable appetites which, if left unchecked, can lead to .

DNA is like a twisted rope, Powell explained, which opens as the enzyme polymerase travels down one thread of the rope to produce an RNA copy of the DNA strand. Normally the RNA leaves the DNA, but sometimes the RNA instead sticks to one piece of DNA, and an 'R-loop' is formed. These hybridized DNA-RNA loops create tension, preventing the DNA from having the characteristic flexibility that allows it to form its spiral helix or twisted-rope shape. R-loops themselves are a relatively recent discovery, and researchers have just begun to understand how they function.

While the discovery of the effect of Topotecan is important, future investigations will determine how and whether the drug may have therapeutic applications for Angelman syndrome, the researchers said.

"Topotecan also has an effect everywhere in the genome," Powell said. "One of the things it does is prevent cells from dividing. That's why it's a cancer drug. But that's also a problem if you want to treat children, because it kills dividing cells."

Powell said that additional investigations are needed to determine whether the drug can be tweaked to eliminate the global effect and only treat the targeted region.

Senior study author Janine LaSalle, professor of microbiology and immunology and a researcher affiliated with the UC Davis MIND Institute, said that the study highlights the significance of epigenetics in understanding both rare and more common neurodevelopmental disorders.

"What determines whether you have Prader-Willi syndrome or Angelman syndrome is whether the maternal or paternal gene is missing," LaSalle said. "These are the classic, textbook epigenetic disorders involving parental imprinting. It's not just about the chromosomes, but it's where—or who—they come from. In our study, we show that R-loops forming on the active paternal chromosome within the Prader-Willi region regulate imprinting of the Angelman gene, Ube3a, on the maternal chromosome.

"Epigenetics is the layers that are put on top of the genetic code by the environment. In the case of the imprinted inheritance of these two diseases, it's simply the environment of whether the chromosomes travel through the egg or the sperm. But environmental influences, such as diet and exposure to pollutants, also affect the epigenetic layers and are becoming increasingly important in more common disorders such as autism."

LaSalle said that the finding also is important because the diseases are caused by defects in a common chromosomal locus for autism-spectrum disorders. Rearrangements in 15q are increasing, she said, in both non-human primates and people. Her lab has recently found an association between polychlorinated biphenyl (PCB) levels and 15q rearrangements in human postmortem brain. Future investigations will examine the role of current persistent organic pollutants, such as polybrominated diphenyl ethers (PBDEs), that may have a role in promoting chromosomal rearrangements and epigenetic alterations in this region.

Explore further: Symptoms of Prader-Willi syndrome associated with interference in circadian, metabolic genes

More information: www.pnas.org/cgi/doi/10.1073/pnas.1305426110

Related Stories

Symptoms of Prader-Willi syndrome associated with interference in circadian, metabolic genes

June 25, 2013
Researchers with the UC Davis MIND Institute and Agilent Laboratories have found that Prader-Willi syndrome—a genetic disorder best known for causing an insatiable appetite that can lead to morbid obesity—is associated ...

New discovery could lead to treatment for Angelman syndrome

December 21, 2011
Results of a new study from the University of North Carolina at Chapel Hill may help pave the way to a treatment for a neurogenetic disorder often misdiagnosed as cerebral palsy or autism.

Discovery of new type of RNA could have implications for some congenital disorders

October 29, 2012
State funding of stem cell research at the UConn Health Center has led one research team to the discovery of a new type of RNA that could one day result in the successful treatment of devastating congenital disorders such ...

'Dark genome' is involved in Rett Syndrome

May 2, 2013
Researchers at the Epigenetics and Cancer Biology Program at IDIBELL led by Manel Esteller, ICREA researcher and professor of genetics at the University of Barcelona, have described alterations in noncoding long chain RNA ...

Brain cell activity imbalance may account for seizure susceptibility in Angelman syndrome

June 6, 2012
New research by scientists at the University of North Carolina School of Medicine may have pinpointed an underlying cause of the seizures that affect 90 percent of people with Angelman syndrome (AS), a neurodevelopmental ...

New insights into how genes turn on and off

March 27, 2013
Researchers at UC Davis and the University of British Columbia have shed new light on methylation, a critical process that helps control how genes are expressed. Working with placentas, the team discovered that 37 percent ...

Recommended for you

Gene variant activity is surprisingly variable between tissues

August 21, 2017
Every gene in almost every cell of the body is present in two variants called alleles—one from the mother, the other one from the father. In most cases, both alleles are active and transcribed by the cells into RNA. However, ...

Genome analysis with near-complete privacy possible, say researchers

August 17, 2017
It is now possible to scour complete human genomes for the presence of disease-associated genes without revealing any genetic information not directly associated with the inquiry, say Stanford University researchers.

Science Says: DNA test results may not change health habits

August 17, 2017
If you learned your DNA made you more susceptible to getting a disease, wouldn't you work to stay healthy?

Genetic variants found to play key role in human immune system

August 16, 2017
It is widely recognized that people respond differently to infections. This can partially be explained by genetics, shows a new study published today in Nature Communications by an international collaboration of researchers ...

Phenotype varies for presumed pathogenic variants in KCNB1

August 16, 2017
(HealthDay)—De novo KCNB1 missense and loss-of-function variants are associated with neurodevelopmental disorders, with or without seizures, according to a study published online Aug. 14 in JAMA Neurology.

Active non-coding DNA might help pinpoint genetic risk for psychiatric disorders

August 16, 2017
Northwestern Medicine scientists have demonstrated a new method of analyzing non-coding regions of DNA in neurons, which may help to pinpoint which genetic variants are most important to the development of schizophrenia and ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.