Comprehensive Parkinson's biomarker test has prognostic and diagnostic value

August 26, 2013

Perelman School of Medicine researchers at the University of Pennsylvania report the first biomarker results reported from the Parkinson's Progression Markers Initiative (PPMI), showing that a comprehensive test of protein biomarkers in spinal fluid have prognostic and diagnostic value in early stages of Parkinson's disease. The study is reported in JAMA Neurology.

Compared to healthy adults, the study found that people with early Parkinson's had lower levels of amyloid beta, tau and in their spinal fluid. In addition, those with lower concentrations of tau and alpha synuclein had greater . And early Parkinson's patients with low levels of amyloid beta and tau were more likely to be classified as having the postural instability-gait disturbance- dominant (PIGD) motor type of disease, where falling, freezing, and walking difficulty are common.

"Biomarkers for Parkinson's disease such as these could help us diagnose patients earlier, and we've now shown that the simultaneous measurement of a variety of neurodegenerative disease proteins is valuable," said study senior author Leslie M. Shaw, PhD, professor of Pathology and Laboratory Medicine at Penn Medicine. Dr. Shaw and John Q. Trojanowski, MD, PhD, director of the Penn Udall Center for Parkinson's Research, are co-leaders of the Bioanalytics Core for the Parkinson's Progression Markers Initiative, an international observational clinical study sponsored by The Michael J. Fox Foundation for Parkinson's Research.

The team evaluated spinal fluid collected from baseline visits of the first 102 PPMI participants - 63 with early, untreated Parkinson's disease and 39 healthy controls. The spinal fluid was evaluated for levels of five biomarkers: amyloid beta, total tau, phosphorylated tau, alpha synuclein and the ratio of total tau to amyloid beta. Spinal fluid measures of amyloid and tau are currently used in research to distinguish Alzheimer's disease from other . In contrast to Alzheimer's, where tau levels are higher than healthy controls, the study found that early Parkinson's patients had lower levels of tau than healthy controls. One reason, researchers suggest, could be that interactions between tau and alpha synuclein may limit the release of tau into the cerebrospinal fluid of Parkinson's patients.

"Through PPMI, we are hoping to identify subgroups of Parkinson's patients whose disease is likely to progress at a different rate, as early as possible," said Dr. Trojanowski. "Early prediction is critical, for both motor and dementia symptoms."

The Parkinson's PIGD motor subtype has been associated with a more rapid cognitive decline as well as greater functional disability. Using the biomarker test, this initial study found that levels of all spinal fluid biomarkers were lower in the PIGD motor subtype than other types of PD as well as healthy controls. In addition, amyloid beta and phosphorylated tau were at lower levels in the PIGD motor subtype, but were no different in tremor or indeterminate subtypes compared to normal controls.

This testing procedure is only being used in research studies, and will be continued to be evaluated and validated in a larger study of the PPMI cohorts.

In addition to leading the Bioanalytics Core of PPMI, Penn's Parkinson's Disease and Movement Disorders Center is one of the two dozen trial sites where volunteers are evaluated throughout the PPMI study. The Penn PDMDC has been part of the PPMI group studying people with early Parkinson's disease as well as healthy adults since 2010, and began enrollment for a new, pre-symptomatic arm of the study in the summer of 2013. The pre-motor arm of PPMI is enrolling participants who do not have Parkinson's disease and are living with one of three potential risk factors for PD: a reduced sense of smell (hyposmia); rapid eye movement sleep behavior disorder (RBD; a disorder in which the individual acts out his/her dreams); or a mutation in the LRRK2 gene (the single greatest genetic contributor to PD known to date).

"In addition to biomarker tests, validating risk factors could enable earlier detection of the disease and open new avenues in the quest for therapies that could slow or stop disease progression," said PPMI trial site study leader Matthew Stern, MD, professor of Neurology and director of Penn's Parkinson's Disease and Movement Disorders Center.

Explore further: Researchers look for clues to progression of Parkinson's disease

More information: JAMA Neurol. Published online August 26, 2013. doi:10.1001/.jamaneurol.2013.3861

Related Stories

Researchers look for clues to progression of Parkinson's disease

July 19, 2013
Emory researchers are conducting a prospective clinical study to examine the possibility of diagnosing Parkinson's disease (PD) before motor symptoms occur. The study is an arm of the Parkinson's Progression Markers Initiative ...

Shape-shifting disease proteins may explain variable appearance of neurodegenerative diseases

July 3, 2013
Neurodegenerative diseases are not all alike. Two individuals suffering from the same disease may experience very different age of onset, symptoms, severity, and constellation of impairments, as well as different rates of ...

Tau transmission model opens doors for new Alzheimer's, Parkinson's therapies

March 15, 2013
Injecting synthetic tau fibrils into animal models induces Alzheimer's-like tau tangles and imitates the spread of tau pathology, according to research from the Perelman School of Medicine at the University of Pennsylvania ...

Brain network decay detected in early Alzheimer's

August 19, 2013
In patients with early Alzheimer's disease, disruptions in brain networks emerge about the same time as chemical markers of the disease appear in the spinal fluid, researchers at Washington University School of Medicine in ...

Five CSF markers differentiate dementia, parkinsonism

August 28, 2012
(HealthDay)—Levels of five different cerebrospinal fluid (CSF) biomarkers are able to improve differentiation between common dementia and parkinsonian disorders, according to a study published online Aug. 27 in the Archives ...

Receptor may aid spread of Alzheimer's and Parkinson's in brain

August 23, 2013
(Medical Xpress)—Scientists at Washington University School of Medicine in St. Louis have found a way that corrupted, disease-causing proteins spread in the brain, potentially contributing to Alzheimer's disease, Parkinson's ...

Recommended for you

Singing may be good medicine for Parkinson's patients

August 11, 2017
(HealthDay)—Singing? To benefit people with Parkinson's disease? It just may help, a researcher says.

Tracing the path of Parkinson's disease proteins

August 4, 2017
As neurodegenerative disorders such as Parkinson's and Alzheimer's disease progress, misfolded proteins clump together in neurons, recruiting normal proteins in the cell to also misfold and aggregate. Cells in which this ...

Diabetes drug shows potential as disease-modifying therapy for Parkinson's disease

August 3, 2017
A drug commonly used to treat diabetes may have disease-modifying potential to treat Parkinson's disease, a new UCL-led study suggests, paving the way for further research to define its efficacy and safety.

Two new studies offer insights into gastrointestinal dysfunction in Parkinson's patients

July 31, 2017
Constipation is one of the most common non-motor related complaints affecting Parkinson's disease (PD) patients. Two important studies from the same research group published in the Journal of Parkinson's Disease expand the ...

New drug may treat and limit progression of Parkinson's disease

July 31, 2017
Researchers at Binghamton University have developed a new drug that may limit the progression of Parkinson's disease while providing better symptom relief to potentially hundreds of thousands of people with the disease.

A new insight into Parkinson's disease protein

July 28, 2017
Abnormal clumps of certain proteins in the brain are a prominent feature of Parkinson's and other neurodegenerative diseases, but the role those same proteins might play in the normal brain has been unknown.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.