Robot treats brain clots with steerable needles (w/ Video)

August 8, 2013 by David Salisbury
This image shows the test of a steerable needle robotic surgery system on phantom blood clot made from gelatin. Credit: Joe Howell, Vanderbilt

Surgery to relieve the damaging pressure caused by hemorrhaging in the brain is a perfect job for a robot.

That is the basic premise of a new image-guided surgical system under development at Vanderbilt University. It employs steerable about the size of those used for biopsies to penetrate the with minimal damage and suction away the blood clot that has formed.

The system is described in an article accepted for publication in the journal IEEE Transactions on Biomedical Engineering. It is the product of an ongoing collaboration between a team of engineers and physicians headed by Assistant Professor Robert J. Webster III and Assistant Professor of Neurological Surgery Kyle Weaver.

The odds of a person getting an intracerebral hemorrhage are one in 50 over his or her lifetime. When it does occur, 40 percent of the individuals die within a month. Many of the survivors have serious brain damage.

"When I was in college, my dad had a ," said Webster. "Fortunately, he was one of the lucky few who survived and recovered fully. I'm glad I didn't know how high his odds of death or severe were at the time, or else I would have been even more scared than I already was."

Operations to "debulk" intracerebral hemorrhages are not popular among : They know their efforts are not likely to make a difference, except when the clots are small and lie on the brain's surface where they are easy to reach. Surgeons generally agree that there is a from removing 25-50 percent of a clot but that benefit can be offset by the damage that is done to the surrounding tissue when the clot is removed. Therefore, when a serious clot is detected in the brain, doctors take a "watchful waiting" approach – administering drugs that decrease the swelling around the clot in hopes that this will be enough to make the patient improve without surgery.

The video will load shortly

For the last four years, Webster's team has been developing a steerable needle system for "transnasal" surgery: operations to remove tumors in the pituitary gland and at the skull base that traditionally involve cutting large openings in a patient's skull and/or face. Studies have shown that using an endoscope to go through the nasal cavity is less traumatic, but the procedure is so difficult that only a handful of surgeons have mastered it.

Last summer, Webster attended a conference in Italy where one of the speakers, Marc Simard, a neurosurgeon at the University of Maryland School of Medicine, ran through his wish list of useful imaginary neurosurgical devices, hoping that some engineer in the audience might one day be able to build one of them. When he described his wish to have a needle-sized robot arm to reach deep into the brain to remove clots, Webster couldn't help smiling because the steerable needle system he had been developing was perfect for the job.

Webster's design, which he calls an active cannula, consists of a series of thin, nested tubes. Each tube has a different intrinsic curvature. By precisely rotating, extending and retracting these tubes, an operator can steer the tip in different directions, allowing it to follow a curving path through the body. The single needle system required for removing brain clots was actually much simpler than the multi-needle transnasal system.

When Webster returned, he told Weaver about the potential new application. The neurosurgeon was quite supportive: "I think this can save a lot of lives. There are a tremendous number of intracerebral hemorrhages and the number is certain to increase as the population ages."

Graduate student Philip Swaney, who is working on the system, likes the fact it is closest to commercialization of all the projects in Webster's Medical and Electromechanical Design Laboratory. "I like the idea of working on something that will begin saving lives in the very near future," he said.

The brain-clot system only needs two tubes: a straight outer tube and a curved inner tube. Both are less than one twentieth of an inch in diameter. When a CT scan has determined the location of the blood clot, the surgeon determines the best point on the skull and the proper insertion angle for the probe. The angle is dialed into a fixture, called a trajectory stem, which is attached to the skull immediately above a small hole that has been drilled to enable the needle to pass into the patient's brain.

The surgeon positions the robot so it can insert the straight outer tube through the trajectory stem and into the brain. He also selects the small inner tube with the curvature that best matches the size and shape of the clot, attaches a suction pump to its external end and places it in the outer tube.

Guided by the CT scan, the robot inserts the outer tube into the brain until it reaches the outer surface of the clot. Then it extends the curved, inner tube into the clot's interior. The pump is turned on and the tube begins acting like a tiny vacuum cleaner, sucking out the material. The robot moves the tip around the interior of the clot, controlling its motion by rotating, extending and retracting the tubes. According to the feasibility studies the researchers have performed, the robot can remove up to 92 percent of simulated .

"The trickiest part of the operation comes after you have removed a substantial amount of the clot. External pressure can cause the edges of the clot to partially collapse making it difficult to keep track of the clot's boundaries," said Webster.

The goal of a future project is to add ultrasound imaging combined with a computer model of how brain tissue deforms to ensure that all of the desired clot material can be removed safely and effectively.

Other members of the research team are Jessica Burgner, formerly a postdoctoral fellow at Vanderbilt and now executive director of the Hannover University Center for Mechatronics in Germany, and Ray Lathrop, a graduate student at Vanderbilt.

Explore further: New technique successfully dissolves blood clots in the brain and lowers risk of brain damage after stroke

More information: tbme.embs.org/

Related Stories

New technique successfully dissolves blood clots in the brain and lowers risk of brain damage after stroke

February 3, 2012
(Medical Xpress) -- Johns Hopkins neurologists report success with a new means of getting rid of potentially lethal blood clots in the brain safely without cutting through easily damaged brain tissue or removing large pieces ...

Treatment with clot-busting drug yields better results after stroke than supportive therapy alone

February 7, 2013
In an update to previous research, Johns Hopkins neurologists say minimally invasive delivery of the drug tPA directly into potentially lethal blood clots in the brain helped more patients function independently a year after ...

Surgical procedure appears to improve outcomes after bleeding stroke

February 7, 2013
A minimally invasive procedure to remove blood clots in brain tissue after hemorrhagic stroke appears safe and may also reduce long-term disability, according to late-breaking research presented at the American Stroke Association's ...

New treatment dissolves blood clots in brain tissue

May 27, 2011
A new treatment that treats a subset of stroke patients by combining minimally invasive surgery, an imaging technique likened to "GPS for the brain," and the clot-busting drug t-PA appears to be safe and effective, according ...

Study finds devices no better than meds in recovery from clot-caused strokes

March 14, 2013
(Medical Xpress)—When someone has a stroke, time equals brain. The longer a stroke is left untreated, the more brain tissue is lost. Since the only proven treatment—a clot-busting drug—works in less than half of patients, ...

New MRI analysis useful in predicting stroke complications caused by clot-busters

December 20, 2012
Johns Hopkins researchers have developed a new way of looking at standard MRI scans that more accurately measures damage to the blood-brain barrier in stroke victims, a process they hope will lead to safer, more individualized ...

Recommended for you

Post-stroke patients reach terra firma with new exosuit technology

July 26, 2017
Upright walking on two legs is a defining trait in humans, enabling them to move very efficiently throughout their environment. This can all change in the blink of an eye when a stroke occurs. In about 80% of patients post-stroke, ...

Brain cells found to control aging

July 26, 2017
Scientists at Albert Einstein College of Medicine have found that stem cells in the brain's hypothalamus govern how fast aging occurs in the body. The finding, made in mice, could lead to new strategies for warding off age-related ...

Molecular hitchhiker on human protein signals tumors to self-destruct

July 24, 2017
Powerful molecules can hitch rides on a plentiful human protein and signal tumors to self-destruct, a team of Vanderbilt University engineers found.

Researchers develop new method to generate human antibodies

July 24, 2017
An international team of scientists has developed a method to rapidly produce specific human antibodies in the laboratory. The technique, which will be described in a paper to be published July 24 in The Journal of Experimental ...

New vaccine production could improve flu shot accuracy

July 24, 2017
A new way of producing the seasonal flu vaccine could speed up the process and provide better protection against infection.

A sodium surprise: Engineers find unexpected result during cardiac research

July 20, 2017
Irregular heartbeat—or arrhythmia—can have sudden and often fatal consequences. A biomedical engineering team at Washington University in St. Louis examining molecular behavior in cardiac tissue recently made a surprising ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.