Depletion of 'traitor' immune cells slows cancer growth in mice

September 16, 2013 by Michelle Ma
This is a stained cross-section of a mouse tumor. In this image, red areas are macrophages, and green indicates the presence of the peptide that can bind with macrophages in cancer cells. Credit: Maryelise Cieslewicz, University of Washington

When a person has cancer, some of the cells in his or her body have changed and are growing uncontrollably. Most cancer drugs try to treat the disease by killing those fast-growing cells, but another approach called immunotherapy tries to stimulate a person's own immune system to attack the cancer itself.

Now, scientists at the University of Washington have developed a strategy to slow tumor growth and prolong survival in mice with cancer by targeting and destroying a type of cell that dampens the body's immune response to cancer. The researchers published their findings this week (Sept. 16) in the Proceedings of the National Academy of Sciences.

"We're really enthusiastic about these results because they suggest an alternative that could be synergistic with current treatments," said co-author Suzie Pun, a UW associate professor of bioengineering.

Our immune system normally patrols for and eliminates . Macrophages are a type of helpful immune cell that can be converted to the "dark side" by signals they receive from a tumor. When inside a tumor, macrophages can switch from helping the immune system to suppressing the body's immune response to cancer. Several studies show a correlation between the number of macrophages in and for patients, Pun said.

The UW team developed a method to target and eliminate the cancer-supporting macrophages in mouse tumors. Researchers predict this strategy could be used along with current treatments such as chemotherapy for .

"We think this would amplify cancer treatments and hopefully make them better," Pun said.

Scientists have a strong understanding of the behavior of macrophages in tumors, but most current methods to remove them do away with all macrophages in the body indiscriminately instead of targeting only the harmful ones that live in tumors.

In this study, UW bioengineering doctoral student Maryelise Cieslewicz designed a method to find a specific amino-acid sequence – or a peptide – that binds only the harmful macrophages in tumors and ignores helpful ones in the bodies of mice. When this sequence was injected into mice with cancer, the research team found that the peptide collected in the macrophage cells within tumors, leaving alone other healthy organs.

Once they discovered they could deliver the peptide sequence to specific cells, the researchers attached another peptide to successfully kill the harmful macrophages without affecting other cells. The mice had slower and better survival when treated with this material.

The research team plans to test this method with existing to hopefully boost the success of other treatments.

The peptide sequence that successfully bound to harmful macrophages in mice doesn't bind to their counterparts in humans, Pun said, but the researchers expect soon to find a similar peptide that targets human cells. They plan to use this method to investigate treatments for other types of cancer, including breast and pancreatic cancers.

The Pun research team collaborated with the UW labs of Elaine Raines in pathology and André Lieber in medical genetics on this study.

Explore further: Some immune cells appear to aid cancer cell growth, study finds

More information: argeted delivery of proapoptotic peptides to tumor-associated macrophages improves survival, www.pnas.org/cgi/doi/10.1073/pnas.1312197110

Related Stories

Some immune cells appear to aid cancer cell growth, study finds

September 5, 2013
The immune system is normally known for protecting the body from illness. But a subset of immune cells appear to be doing more harm than good.

Study reveals that chemotherapy works in an unexpected way

April 4, 2013
It's generally thought that anticancer chemotherapies work like antibiotics do, by directly killing off what's harmful. But new research published online on April 4 in the Cell Press journal Immunity shows that effective ...

Inhibiting macrophage MerTK signaling creates an innate immune response against cancer

July 8, 2013
The tyrosine kinase MerTK plays a prominent role in the body's immune response. MerTK signaling helps "calm" the body's first line of immunity, the macrophage, while it performs the routine duties - clearing cells that die ...

Recommended for you

Shooting the achilles heel of nervous system cancers

July 20, 2017
Virtually all cancer treatments used today also damage normal cells, causing the toxic side effects associated with cancer treatment. A cooperative research team led by researchers at Dartmouth's Norris Cotton Cancer Center ...

Molecular changes with age in normal breast tissue are linked to cancer-related changes

July 20, 2017
Several known factors are associated with a higher risk of breast cancer including increasing age, being overweight after menopause, alcohol intake, and family history. However, the underlying biologic mechanisms through ...

Immune-cell numbers predict response to combination immunotherapy in melanoma

July 20, 2017
Whether a melanoma patient will better respond to a single immunotherapy drug or two in combination depends on the abundance of certain white blood cells within their tumors, according to a new study conducted by UC San Francisco ...

Discovery could lead to better results for patients undergoing radiation

July 19, 2017
More than half of cancer patients undergo radiotherapy, in which high doses of radiation are aimed at diseased tissue to kill cancer cells. But due to a phenomenon known as radiation-induced bystander effect (RIBE), in which ...

Definitive genomic study reveals alterations driving most medulloblastoma brain tumors

July 19, 2017
The most comprehensive analysis yet of medulloblastoma has identified genomic changes responsible for more than 75 percent of the brain tumors, including two new suspected cancer genes that were found exclusively in the least ...

Novel CRISPR-Cas9 screening enables discovery of new targets to aid cancer immunotherapy

July 19, 2017
A novel screening method developed by a team at Dana-Farber/Boston Children's Cancer and Blood Disorders Center—using CRISPR-Cas9 genome editing technology to test the function of thousands of tumor genes in mice—has ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.