Insulin secretion disrupted by increased fatty acids

September 9, 2013, Journal of Clinical Investigation

Patients with type 2 diabetes have increased levels of circulating glucose and fatty acids, which lead to disease complications. In healthy individuals, β cells within pancreatic islets release insulin in response to glucose and incretins, which are gastrointestinal hormones. Coordination between β cells is predicted to be important for insulin release.

In this issue of the Journal of Clinical Investigation, David Hodson and colleagues at Imperial College London demonstrate that ? cell-? cell interactions are important for in human islets and that these interactions are regulated by incretins. The authors found that increased fatty acid levels suppressed incretin-associated insulin release.

These findings indicate that therapies aimed at maintaining ? cell connectivity may be useful for restoring glucose balance in type 2 diabetes.

Explore further: Absolute incretin effect reduced in type 2 diabetes

More information: Lipotoxicity disrupts incretin-regulated human ? cell connectivity, J Clin Invest. DOI: 10.1172/JCI68459

Abstract
Pancreatic ? cell dysfunction is pathognomonic of type 2 diabetes mellitus (T2DM) and is driven by environmental and genetic factors. ? cell responses to glucose and to incretins such as glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are altered in the disease state. While rodent ? cells act as a coordinated syncytium to drive insulin release, this property is unexplored in human islets. In situ imaging approaches were therefore used to monitor in real time the islet dynamics underlying hormone release. We found that GLP-1 and GIP recruit a highly coordinated subnetwork of ? cells that are targeted by lipotoxicity to suppress insulin secretion. Donor BMI was negatively correlated with subpopulation responses to GLP-1, suggesting that this action of incretin contributes to functional ? cell mass in vivo. Conversely, exposure of mice to a high-fat diet unveiled a role for incretin in maintaining coordinated islet activity, supporting the existence of species-specific strategies to maintain normoglycemia. These findings demonstrate that ? cell connectedness is an inherent property of human islets that is likely to influence incretin-potentiated insulin secretion and may be perturbed by diabetogenic insults to disrupt glucose homeostasis in humans.

Related Stories

Absolute incretin effect reduced in type 2 diabetes

June 25, 2012
(HealthDay) -- For patients with type 2 diabetes mellitus (T2DM) the absolute incretin effect is reduced compared with healthy individuals, but its relative importance is increased, particularly in first-phase insulin secretion, ...

New mechanism regulating insulin secretion may explain genetic susceptibility to diabetes

February 4, 2013
New Zealand research revealing a new mechanism for how glucose stimulates insulin secretion may provide a new explanation for how a gene that makes people more susceptible to diabetes – called TCF7L2 – actually contributes ...

Fractalkine: New protein target for controlling diabetes

April 11, 2013
Researchers at the University of California, San Diego School of Medicine have identified a previously unknown biological mechanism involved in the regulation of pancreatic islet beta cells, whose role is to produce and release ...

Botox proteins could hold cure for diabetes

July 25, 2013
Scientists believe the proteins that are targeted by cosmetic surgery treatment Botox could hold the secret to treating and even curing Type 2 diabetes.

Cell study offers more diabetic patients chance of transplant

August 29, 2013
Diabetic patients could benefit from a breakthrough that enables scientists to take cells from the pancreas and change their function to produce insulin.

No rebirth for insulin secreting pancreatic beta cells

April 24, 2013
Pancreatic beta cells store and release insulin, the hormone responsible for stimulating cells to convert glucose to energy. The number of beta cells in the pancreas increases in response to greater demand for insulin or ...

Recommended for you

Researchers devise decoy molecule to block pain where it starts

January 16, 2018
For anyone who has accidentally injured themselves, Dr. Zachary Campbell not only sympathizes, he's developing new ways to blunt pain.

Scientists unleash power of genetic data to identify disease risk

January 16, 2018
Massive banks of genetic information are being harnessed to shed new light on modifiable health risks that underlie common diseases.

Blood-vessel-on-a-chip provides insight into new anti-inflammatory drug candidate

January 15, 2018
One of the most important and fraught processes in the human body is inflammation. Inflammatory responses to injury or disease are crucial for recruiting the immune system to help the body heal, but inflammation can also ...

Molecule produced by fat cells reduces obesity and diabetes in mice

January 15, 2018
UC San Francisco researchers have discovered a new biological pathway in fat cells that could explain why some people with obesity are at high risk for metabolic diseases such as type 2 diabetes. The new findings—demonstrated ...

Obese fat becomes inflamed and scarred, which may make weight loss harder

January 12, 2018
The fat of obese people becomes distressed, scarred and inflamed, which can make weight loss more difficult, research at the University of Exeter has found.

Optimized human peptide found to be an effective antibacterial agent

January 11, 2018
A team of researchers in the Netherlands has developed an effective antibacterial ointment based on an optimized human peptide. In their paper published in the journal Science Translational Medicine, the group describes developing ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.