Fractalkine: New protein target for controlling diabetes

April 11, 2013, University of California - San Diego

Researchers at the University of California, San Diego School of Medicine have identified a previously unknown biological mechanism involved in the regulation of pancreatic islet beta cells, whose role is to produce and release insulin. The discovery suggests a new therapeutic target for treating dysfunctional beta cells and type 2 diabetes, a disease affecting more than 25 million Americans.

Writing in the April 11, 2013 issue of Cell, Jerrold M. Olefsky, MD, associate dean for scientific affairs and distinguished professor of medicine, and colleagues say a transmembrane binding protein called fractalkine, which typically mediates cell-to-cell adhesion though its receptor, CX3CR1, can also be released from cells to circulate in the blood and stimulate insulin secretion.

"Our discovery of fractalkine's role in is novel and has never been talked about in prior literature," said Olefsky. More importantly, the research highlights fractalkine's apparently vital role in normal, healthy beta cell function. In mouse models and in cultured human islets, the researchers found administering the protein stimulated insulin secretion and improved , both key factors in diabetes. In contrast, fractalkine had no effect in mice or islets when the fractalkine receptor was deleted.

"Whether or not decreased fractalkine or impaired fractalkine signaling are causes of decreased beta cell function in diabetes is unknown," said Olefsky. "What we do know, without doubt, is that administration of fractalkine improves or restores insulin secretion in all of the mouse models we have examined, as well as in human ."

Olefsky said fractalkine or a protein analog could prove "a potential treatment to improve insulin secretion in type 2 diabetic patients. It might also improve beta cell function or beta cell health, beyond simply increasing , since fractalkine prevents beta cell apoptosis (cell death) and promotes the beta program.

"If successfully developed, this could be an important new complement to the therapeutic arsenal we use in type 2 diabetes," Olefsky continued. "It is not likely to 'cure' diabetes, but it would certainly do a good job at providing glycemic control."

Explore further: New mechanism regulating insulin secretion may explain genetic susceptibility to diabetes

Related Stories

New mechanism regulating insulin secretion may explain genetic susceptibility to diabetes

February 4, 2013
New Zealand research revealing a new mechanism for how glucose stimulates insulin secretion may provide a new explanation for how a gene that makes people more susceptible to diabetes – called TCF7L2 – actually contributes ...

Insulin signaling is distorted in pancreases of Type 2 diabetics

December 13, 2011
Insulin signaling is altered in the pancreas, a new study shows for the first time in humans. The errant signals disrupt both the number and quality of beta cells — the cells that produce insulin.

The role of beta cell regeneration in type 2 diabetes

October 10, 2012
The World Health Organization (WHO) has declared type 2 diabetes as the epidemic of the 21st century. A study is focusing on understanding the mechanisms underlying insulin resistance and the role of beta-cell regeneration.

Researchers find beta cell stress could trigger the development of type 1 diabetes

March 22, 2012
In type 1 diabetes (T1D), pancreatic beta cells die from a misguided autoimmune attack, but how and why that happens is still unclear. Now, JDRF-funded scientists from the Indiana University School of Medicine have found ...

Cell-signaling pathway has key role in development of gestational diabetes

March 16, 2012
Researchers at the University of Pittsburgh School of Medicine have identified a cell-signaling pathway that plays a key role in increasing insulin secretion during pregnancy and, when blocked, leads to the development of ...

Recommended for you

Genetic discovery may help better identify children at risk for type 1 diabetes

January 17, 2018
Six novel chromosomal regions identified by scientists leading a large, prospective study of children at risk for type 1 diabetes will enable the discovery of more genes that cause the disease and more targets for treating ...

Thirty-year study shows women who breastfeed for six months or more reduce their diabetes risk

January 16, 2018
In a long-term national study, breastfeeding for six months or longer cuts the risk of developing type 2 diabetes nearly in half for women throughout their childbearing years, according to new Kaiser Permanente research published ...

Women who have gestational diabetes in pregnancy are at higher risk of future health issues

January 16, 2018
Women who have gestational diabetes mellitus (GDM) during pregnancy have a higher than usual risk of developing type 2 diabetes, hypertension, and ischemic heart disease in the future, according to new research led by the ...

Diabetes gene found that causes low and high blood sugar levels in the same family

January 15, 2018
A study of families with rare blood sugar conditions has revealed a new gene thought to be critical in the regulation of insulin, the key hormone in diabetes.

Discovery could lead to new therapies for diabetics

January 12, 2018
New research by MDI Biological Laboratory scientist Sandra Rieger, Ph.D., and her team has demonstrated that an enzyme she had previously identified as playing a role in peripheral neuropathy induced by cancer chemotherapy ...

Enzyme shown to regulate inflammation and metabolism in fat tissue

January 11, 2018
The human body has two primary kinds of fat—white fat, which stores excess calories and is associated with obesity, and brown fat, which burns calories in order to produce heat and has garnered interest as a potential means ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.