Protein 'motif' crucial to telomerase activity

September 19, 2013, The Wistar Institute
This model structure of the catalytic portion of telomerase shows how the TFLY motif (green) is positioned at the entry of the pocket that guides the RNA template in the interior cavity of the telomerase ring and were the active site of the enzyme if located for catalysis. Credit: Emmanuel Skordalakes/The Wistar Institute

It is difficult to underestimate the importance of telomerase, an enzyme that is the hallmark of both aging and the uncontrolled cell division associated with cancer. In an effort to understand and control telomerase activity, researchers at The Wistar Institute have discovered a protein "motif," named TFLY, which is crucial to the function of telomerase. Altering this motif disrupts telomerase function, they found, a fact that they believe will help them in their efforts to identify inhibitors of telomerase with potential cancer therapeutic properties.

Their findings are published in the October 8 issue of the journal Structure, available online now.

"Telomerase is a unique protein-RNA complex where the protein subunit uses its RNA component as a template to add identical fragments of DNA to the end of chromosomes," said Emmanuel Skordalakes, Ph.D., associate professor in the Gene Expression and Regulation program of Wistar's NCI-designated Cancer Center. "We identified a motif in the of telomerase that controls how the enzyme carries out its activity in vertebrates such as ourselves."

"If you disrupt this segment of the protein, by altering its , you disrupt the ability of telomerase to function," Skordalakes explained. "Obviously, this information can be used in our efforts to identify drug therapies that kill by targeting telomerase activity."

Telomerase is an enzyme that replicates the ends of chromosomes (sections of DNA called telomeres), replacing the DNA lost when chromosomes are copied before cell division and, therefore, maintaining the stability of the genome. It performs this critical service in embryonic development, growing organisms and in a few specialized adult cell lines, including .

In most normal adult cells, however, telomerase is switched off almost entirely to prevent the dangers of runaway . Without telomerase, senesce (grow old) after about 50-55 rounds of cell division because the telomeres get too short to provide the buffer required to protect the ends of chromosomes and stabilize the cell's genetic code.

It is now established that nearly 90 percent of cancers develop a way of reactivating telomerase as a means of survival. Inhibiting telomerase function has been viewed as an ideal way to put the brakes on a wide range of cancers. According to Skordalakes, one way to do so would be to disrupt the protein RNA complex that comprises the core of the telomerase enzyme. The RNA binding domain (TRBD) of telomerase is a crucial component to this process and, therefore, the enzyme's ability to work.

In 2007, the Skordalakes laboratory was the first to obtain the three-dimensional structure of TRBD. Since then, his team has been creating molecular inhibitors to target the TRBD RNA-binding pockets as means to inhibit telomerase enzymatic activity.

The present study arose as the Skordalakes laboratory sought to better understand the role of TRBD in telomerase function. They engineered a truncated version of the protein subunit of a vertebrate telomerase, consisting of TRBD and a conserved portion of the N-terminal region of the protein. Within this portion they identified the TFLY, a conserved element that they showed is involved in binding the RNA component of telomerase and this interaction is important for telomerase protein-RNA assembly and activity.

"This TFLY motif comprises a significant part of the binding pocket that enables the enzyme to grapple the RNA template and guide it to the active site of the enzyme for catalysis," Skordalakes said, "but it also facilitates the stable association of the protein with its RNA component thus forming a fully functional telomerase enzyme."

Explore further: Researchers identify new potential target for cancer therapy

Related Stories

Researchers identify new potential target for cancer therapy

April 19, 2013
Researchers at UT Southwestern Medical Center have found that alternative splicing – a process that allows a single gene to code for multiple proteins – appears to be a new potential target for anti-telomerase cancer ...

Research reveals how cancer-driving enzyme works

May 6, 2011
Cancer researchers at UT Southwestern Medical Center are helping unlock the cellular-level function of the telomerase enzyme, which is linked to the disease's growth.

Fanning the flames of tumor growth: Enzyme responsible for protecting chromosome ends stimulates tumorigenesis

February 27, 2013
Chromosomes are capped by long, repetitive DNA sequences called telomeres. These caps prevent genomic damage by insulating against the steady shortening of DNA ends that naturally accompanies replication. Once mature, cells ...

Recommended for you

Scientists uncover DNA 'shield' with crucial roles in normal cell division

July 18, 2018
Scientists have made a major discovery about how cells repair broken strands of DNA that could have huge implications for the treatment of cancer.

Researchers report protein kinase as the switch controlling obesity and diabetes

July 18, 2018
One of the research lines targeting the worldwide obesity epidemic is the manipulation of brown adipose tissue, a 'good' type of fat that burns lipids to maintain an appropriate body temperature. Researchers at the Centro ...

New retinal ganglion cell subtypes emerge from single-cell RNA sequencing

July 18, 2018
Single-cell sequencing technologies are filling in fine details in the catalog of life. Researchers at the University of Connecticut Health Center (UConn Health) and The Jackson Laboratory (JAX) have identified 40 subtypes ...

Researchers develop novel bioengineering technique for personalized bone grafts

July 18, 2018
Scientists from the New York Stem Cell Foundation (NYSCF) Research Institute have developed a new bone engineering technique called Segmental Additive Tissue Engineering (SATE). The technique, described in a paper published ...

Scientists find malformations and lower survival rates in zebrafish embryos exposed to cannabinoids

July 16, 2018
Exposure to the main chemical components of cannabis has a detrimental effects on developing zebrafish embryos, according to a new study conducted by University of Alberta biologists.

Fetal gene therapy prevents fatal neurodegenerative disease

July 16, 2018
A fatal neurodegenerative condition known as Gaucher disease can be prevented in mice following fetal gene therapy, finds a new study led by UCL, the KK Women's and Children's Hospital and National University Health System ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.