First proteomic analysis of birth defect demonstrates power of a new technique

September 11, 2013 by Ellen Goldbaum
A UB team led by Fliesler revealed important information on a rare, sometimes deadly, birth defect. Credit: Sandra Kicman, University at Buffalo

The first proteomic analysis of an animal model of a rare, sometimes deadly birth defect, Smith-Lemli-Opitz Syndrome (SLOS), has revealed that the molecular mechanisms that cause it are more complex than previously understood. SLOS involves multiple neurosensory and cognitive abnormalities, mental and physical disabilities, including those affecting vision and in severe cases, death before the age of 10.

The research, published by University at Buffalo scientists on Aug. 26 in Molecular and Cellular Proteomics, is the first to demonstrate a broad range of protein changes in the retina of a rat model of SLOS. To study SLOS, the UB researchers focused on the retina, which undergoes as a result of SLOS. They compared in the retinas of rats with SLOS to those of healthy rats.

Since the 1990s, when it was discovered that SLOS involves defective cholesterol biosynthesis, much of the research on the disease has tended to emphasize only cholesterol metabolism, explains Steven J. Fliesler, PhD, senior author on the paper and Meyer H. Riwchun Endowed Chair Professor, vice chair and director of research in the UB Department of Ophthalmology and research health scientist at the Veterans Affairs Western New York Healthcare System.

"Only a few reports in the literature address the non-lipid constituents of cells and tissues in people affected with this disease," he says. "We had some clues that there were changes in in SLOS and since genes code for proteins, not lipids, we figured that maybe there are also significant proteomic changes involved.

"This is the first time anyone has looked at in this and we found hundreds of them," continues Fliesler, who also is professor of biochemistry. While there are genetic mouse models of the disease, they have limited utility since they only live for one day while the retina (Fliesler's main area of interest) takes about a month after birth to form and fully mature in rodents.

"The SLOS rat model we used is able to live for at least three months, during which time the retina undergoes progressive degeneration," says Fliesler. He adds that while the retina in the SLOS animal model degenerates, it is not yet known if the retina in humans initially undergoes normal development and subsequently degenerates in the course of the disease.

The UB research also provides the first glimpse of how cells in the retina die in this animal model, an observation that was provided by co-author Matthew Behringer, who conducted the research as a UB undergraduate in the Department of Biochemistry in the School of Medicine and Biomedical Sciences.

"Through this proteomic analysis, we found that the photoreceptor (rod and cone) cells die not through conventional programmed cell death (or apoptosis) but through some alternative mechanism, which is still under investigation," Fliesler explains.

To explore the proteomics of the SLOS rat model, the UB researchers, led by co-corresponding author Jun Qu, PhD, associate professor in the UB Department of Pharmaceutical Sciences in the School of Pharmacy and Pharmaceutical Sciences and the Department of Ophthalmology, used ion current based proteomic profiling, a relatively new and sophisticated methodology for studying proteins.

"This paper demonstrates that ion current based proteomic profiling is superior to conventional methods and could be broadly applicable to more common diseases, such as diabetes, cardiovascular disease, Alzheimer's Disease and age-related macular degeneration," says Fliesler.

Proteomic profiling is a method of studying differences in protein expression. Qu's lab is one of the national leaders in proteomic profiling on a large scale. The sophisticated methodology he and colleagues have developed was a key factor in the success of this research. The technique provides coverage for many more proteins than conventional techniques, especially for numerous membrane-associated retina proteins.

Qu's work on this unique methodology eliminates a major source of false-positives that can occur in conventional proteomics analysis. Additional advantages of ion current based proteomic profiling are that it requires extremely small amounts of material, as little as 100 micrograms, and is objective, quantitative and highly reproducible. The method has been developed for a wide variety of biological specimens, ranging from microorganisms to humans.

The research exemplifies successful collaboration between two labs at UB that are part of the State University of New York Eye Institute, a SUNY-wide consortium funded by the SUNY REACH initiative, which brings together researchers in the ophthalmology departments of the four SUNY medical schools, including UB, as well as the SUNY College of Optometry and the College of Nanoscale Science and Technology.

"Thanks to the SUNY Eye Institute and SUNY REACH, we have a proteomics core module and we promote collaborations across the SUNY Eye Institute, which utilize this kind of methodology," explains Fliesler. "This facilitates our ability to do this kind of analysis in a very cost- effective manner within SUNY, as opposed to having to pay another institution or a private company for such analyses."

Explore further: Gene regulator is key to healthy retinal development and good vision in adulthood

Related Stories

Gene regulator is key to healthy retinal development and good vision in adulthood

August 8, 2013
Scientists are developing a clearer picture of how visual systems develop in mammals. The findings offer important clues to the origin of retinal disorders later in life.

Researchers report a complete description of gene expression in the human retina

July 18, 2013
Investigators at Massachusetts Eye and Ear and Harvard Medical School have published the most thorough description of gene expression in the human retina reported to date. In a study published today in the journal BMC Genomics, ...

Researchers report a critical role for the complement system in early macular degeneration

August 15, 2013
In a study published on line this week in the journal Human Molecular Genetics, Drs. Donita Garland, Rosario Fernandez-Godino, and Eric Pierce of the Ocular Genomics Institute at the Massachusetts Eye and Ear, Harvard Medical ...

Easy, effective therapy to restore sight: Engineered virus will improve gene therapy for blinding eye diseases

June 12, 2013
Researchers at the University of California, Berkeley, have developed an easier and more effective method for inserting genes into eye cells that could greatly expand gene therapy to help restore sight to patients with blinding ...

Cholesterol-lowering eye drops could treat macular degeneration

April 2, 2013
A new study raises the intriguing possibility that drugs prescribed to lower cholesterol may be effective against macular degeneration, a blinding eye disease.

Recycling in the eye promotes good vision

July 19, 2013
Recycling isn't just good for the environment. It's also good for your eyesight.

Recommended for you

Want to win at sports? Take a cue from these mighty mice

July 20, 2017
As student athletes hit training fields this summer to gain the competitive edge, a new study shows how the experiences of a tiny mouse can put them on the path to winning.

'Smart' robot technology could give stroke rehab a boost

July 19, 2017
Scientists say they have developed a "smart" robotic harness that might make it easier for people to learn to walk again after a stroke or spinal cord injury.

Engineered liver tissue expands after transplant

July 19, 2017
Many diseases, including cirrhosis and hepatitis, can lead to liver failure. More than 17,000 Americans suffering from these diseases are now waiting for liver transplants, but significantly fewer livers are available.

Lunatic Fringe gene plays key role in the renewable brain

July 19, 2017
The discovery that the brain can generate new cells - about 700 new neurons each day - has triggered investigations to uncover how this process is regulated. Researchers at Baylor College of Medicine and Jan and Dan Duncan ...

New animal models for hepatitis C could pave the way for a vaccine

July 19, 2017
They say that an ounce of prevention is worth a pound of cure. In the case of hepatitis C—a disease that affects nearly 71 million people worldwide, causing cirrhosis and liver cancer if left untreated—it might be worth ...

Omega-3 fatty acids fight inflammation via cannabinoids

July 18, 2017
Chemical compounds called cannabinoids are found in marijuana and also are produced naturally in the body from omega-3 fatty acids. A well-known cannabinoid in marijuana, tetrahydrocannabinol, is responsible for some of its ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.